Колебательные системы со многими степенями свободы. Связанные колебания
Колебания одной материальной точки с двумя степенями свободы.
Рассмотрим шарик, прикрепленный к прямоугольной рамке четырьмя взаимно перпенди-кулярными натянутыми пружинами как показано на рис. 1.
1. Пружины одинаковы.
Траектория движения шарика определяется начальными условиями.
1) .
.
Шарик движется по прямой линии, проходящей через начало координат.
2) .
.
Шарик движется по эллипсу с полуосями и .
2. Пружины разные.
Пусть, например, . В этом случае за одно полное колебание по оси шарик совершит два колебания по оси (рис. 2). Такие траектории при кратных частотах по осям и называются фигурами Лиссажу. Их можно визульно наблюдать на экране осциллографа при соответствующем выборе частот напряжений, подаваемых на вертикальные и горизонтальные пластины.
Связанные колебания большого числа материальных точек.
Мы рассмотрели колебания одной материальной точки с двумя степенями свободы. Перейдем к рассмотрению колебательных систем из большого числа материальных точек, связанных между собой посредством упругих сил. Примером такой системы является натя-нутая струна, в которой колебания каждого ее элемента определяется колебаниями соседних элементов. Для выяснения физической сущности таких процессов рассмотрим простую систему из двух шариков, способных двигаться по вертикальным стержням и связанных с помощью пружин между собой и со стенками (рис. 3). Такая система имеет две степени свободы - и . При этом сила, действующая на каждый шарик зависит от эти двух координат. Для простоты шарики и пружины будем считать одинако-выми. Будем также предполагать, что пружины сильно натянуты, а колебания являются малыми. При этих условиях будет обеспечена пропорцио-нальнось возвращающей силы смещению шариков вдоль стержней.
Для описания движения такой системы удобно выделить два важных типа колебаний.
Парциальные колебания: один из шариков закреплен в положении равновесия. В общем случае частоты таких колебаний и разные. Они называются парциальными частотами. В нашем частном случае .
Нормальные колебания: все точки системы совершают колебания с одинаковой частотой.
Такие частоты называются нормальными частотами. В нашей системе нормальные колеба-ния с частотами и возникают при двух типах начальных условий: 1) оба шарика отклонены от положения равновесия в одну сторону; 2) шарики отклонены на одинаковое расстояние в разные стороны (рис. 4). В первом случае колебания происходят в одинаковой фазе, а во втором – в противоположных фазах. При этом , так как средняя пружина не деформируется в таких колебаниях. Во втором типе начяальных условий средняя пружина деформирована сильнее, чем при парциальных коле-баниях, поэтому . Произвольные начальные отклонения шариков , можно всегда представить в виде суммы начальных отклонений этих двух типов с амплитудами
, .
Этот простой факт является отражением более общего утверждения: любое сложное движе-ние связанной колебательной системы есть сумма нормальных колебаний с различными частотами и начальными отклонениями.
Таким образом, движение при любых начальных условиях в нашей системе с двумя степе-нями свободы является суммой гармонических колебаний с частотами и . Такие движения называются биениями. Рассмотрим сумму двух колебаний с одинаковыми ампли-тудами с близкими частотами и нулевыми начальными фазами:
.
При можно рассматривать такое движение (биение) как колебание с медленно изменяющейся амплитудой (рис. 5).
, где -
период биений.
ЛЕКЦИЯ 16