Дифференциальные уравнения 1-го порядка с разделяющимися переменными
Дифференциальные уравнения.
Основные понятия об обыкновенных дифференциальных уравнениях.
Определение 1. Обыкновенным дифференциальным уравнением n – го порядка для функции y аргумента x называется соотношение вида
(1.1),
где F – заданная функция своих аргументов. В названии этого класса математических уравнений термин «дифференциальное» подчеркивает, что в них входят производные (функции, образованные как результат дифференцирования); термин – «обыкновенное» говорит о том, что искомая функция зависит только от одного действительного аргумента.
Обыкновенное дифференциальное уравнение может не содержать в явном виде аргумент x, искомую функцию и любые ее производные, но старшая производная обязана входить в уравнение n-го порядка. Например
а) – уравнение первого порядка;
б) – уравнение третьего порядка.
При написании обыкновенных дифференциальных уравнений часто используются обозначения производных через дифференциалы:
в) – уравнение второго порядка;
г) – уравнение первого порядка,
образующее после деления на dx эквивалентную форму задания уравнения: .
Функция называется решением обыкновенного дифференциального уравнения, если при подстановке в него оно обращается в тождество.
Например, уравнение 3-го порядка
имеет решение .
Найти тем или иным приемом, например, подбором, одну функцию, удовлетворяющую уравнению, не означает решить его. Решить обыкновенное дифференциальное уравнение – значит найти все функции, образующие при подстановке в уравнение тождество. Для уравнения (1.1) семейство таких функций образуется с помощью произвольных постоянных и называется общим решением обыкновенного дифференциального уравнения n-го порядка, причем число констант совпадает с порядком уравнения: Общее решение может быть, и не разрешено явно относительно y(x): В этом случае решение принято называть общим интегралом уравнения (1.1).
Например, общим решением дифференциального уравнения является следующее выражение: , причем второе слагаемое может быть записано и как , так как произвольная постоянная , делённая на 2, может быть заменена новой произвольной постоянной .
Задавая некоторые допустимые значения всем произвольным постоянным в общем решении или в общем интеграле, получаем определенную функцию, уже не содержащую произвольных констант. Эта функция называется частным решением или частным интегралом уравнения (1.1). Для отыскания значений произвольных постоянных, а следовательно, и частного решения, используются различные дополнительные условия к уравнению (1.1). Например, могут быть заданы так называемые начальные условия при (1.2)
В правых частях начальных условий (1.2) заданы числовые значения функции и производных, причем, общее число начальных условий равно числу определяемых произвольных констант.
Задача отыскания частного решения уравнения (1.1) по начальным условиям называется задачей Коши.
§ 2. Обыкновенные дифференциальные уравнения 1-го порядка – основные понятия.
Обыкновенное дифференциальное уравнение 1-го порядка (n=1) имеет вид: или, если его удается разрешить относительно производной: . Общее решение y=y(x,С) или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядка позволяет определить значение константы из общего решения или из общего интеграла. Таким образом, будет найдено частное решение или, что тоже, будет решена задача Коши. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива теорема, принимаемая здесь без доказательства.
Теорема 2.1. Если в уравнении функция и ее частная производная непрерывны в некоторой области D плоскости XOY , и в этой области задана точка , то существует и притом единственное решение , удовлетворяющее как уравнению , так и начальному условию .
Геометрически общее решение уравнения 1-го порядка представляет собой семейство кривых на плоскости XOY, не имеющих общих точек и отличающихся друг от друга одним параметром – значением константы C. Эти кривые называются интегральными кривыми для данного уравнения. Интегральные кривые уравнения обладают очевидным геометрическим свойством: в каждой точке тангенс угла наклона касательной к кривой равен значению правой части уравнения в этой точке: . Другими словами, уравнение задается в плоскости XOY поле направлений касательных к интегральным кривым. Замечание: Необходимо отметить, что к уравнению приводится уравнение и так называемое уравнение в симметрической форме .
Дифференциальные уравнения 1-го порядка с разделяющимися переменными.
Определение. Дифференциальным уравнением с разделяющимися переменными называется уравнение вида (3.1)
или уравнение вида (3.2)
Для того, чтобы в уравнении (3.1) разделить переменные, т.е. привести это уравнение к так называемому уравнению с разделенными переменными, произвести следующие действия:
;
Теперь надо решить уравнение g(y)= 0. Если оно имеет вещественное решение y=a, то y=a тоже будет решением уравнения (3.1).
Уравнение (3.2) приводится к уравнению с разделенными переменными делением на произведение :
, что позволяет получить общий интеграл уравнения (3.2): . (3.3)
Интегральные кривые (3.3) будут дополнены решениями , если такие решения существуют.
Пример.
Решить уравнение: .
Решение.
Разделяем переменные:
.
Интегрируя, получаем
Далее из уравнений и находим x=1, y=-1. Эти решения – частные решения.