Определители третьего порядка
Определителем третьего порядка называется число, которое может быть вычислено по следующему правилу (правило Саррюса): к определителю справа приписывается первый и второй столбцы и элементы, стоящие на диагоналях полученной таблицы, перемножаются, а затем эти произведения складываются, причем произведения элементов на диагоналях, идущих снизу вверх, берутся со знаком минус:
.
Примеры.
а) -
-15-24-24=0
б)
1.3. Задачи для самостоятельного решения
Вычислить определители второго и третьего порядка:
а) б) ; в)
Определители произвольного порядка
Пусть задан определитель n-го порядка
.
Для любого определителя выполнены свойства:
а) если в определителе две строки или два столбца равны, то определитель равен нулю:
б) если в определителе какая-либо строка или столбец состоит из нулей, то этот определитель равен нулю:
в) общий множитель в строке или столбце можно вынести за знак определителя:
г) если в определителе поменять местами две строки или два столбца, то определитель изменит знак:
д) определитель не изменится, если к произвольной строке прибавить другую строку, домноженную на любое число. Это же справедливо и для столбцов. Например, в следующем определителе к третьей строке добавлена первая, домноженная на минус два:
Для вычисления определителей специального треугольного вида применимо следующее правило:
.
Свойства определителей позволяют любой определитель свести к треугольному виду и вычислить его по указанному правилу.
Примеры.
а) (ко второй строке прибавляем первую, домноженную на (-2), к третьей строке прибавляем первую, домноженную на (-3), к четвертой строке прибавляем первую, домноженную на (-8))
(к третьей строке прибавляем вторую, домноженную на (-2))
(по второму свойству определителей).
б) (поменяем вторую и первую строки местами, чтобы иметь единицу на первом месте в первой строке) =
(ко второй строке прибавляем первую, домноженную на (-3) и т.д.) =
.
в) (к третьей строке прибавляем вторую, домноженную на (-1), к четвертой строке прибавляем третью, домноженную на (-1), для уменьшения чисел в первом столбце)
1.5. Задачи для самостоятельного решения
Вычислить определители:
МАТРИЦЫ И ОПЕРАЦИИ НАД НИМИ
Понятие матрицы
Матрицей порядка n´m называется прямоугольная таблица чисел вида
.
Числа аij называются элементами матрицы. Матрицу будем коротко записывать = (аij) n´m . Если n=m, то матрица называется квадратной порядка n.
Матрица с элементами (i,j=1,2,…,n) называется единичной матрицей n-го порядка.
Умножение матрицы на число
Чтобы умножить матрицу А на число l, необходимо умножить каждый элемент матрицы на это число.
Пример. Для матрицы найдем произведение . Из определения получаем
Сложение матриц
Если матрица В = (bij)n´m имеет тот же порядок, что и матрица А = =(аij)n´m, то можно определить их сумму - матрицу С = А + В = (cij)n´m того же порядка - по правилу: сij = аij + bij для i =1, 2,..., n; j = 1, 2,..., m. Матрицы различных порядков складывать нельзя.
Пример. Найдем сумму матриц А + В, где
Умножение матриц
Произведением матрицы А = (аij)n´m на матрицу В = (bij)m´p называется матрица С = А´ В = (сij)n´p, построенная по правилу
Практически перемножение матриц осуществляется следующим образом: берут i-ю строку матрицы А, умножают ее поэлементно на j-й столбец матрицы В и эти произведения складывают. Полученное число является элементом матрицы С, стоящим в i-й строке и j-м столбце.
Пример. Найдем произведение матриц АВ, если
Внимание:
а) матрица А имеет порядок n´m, матрица В имеет порядок m´p, а их произведение АВ - порядок n´p;
б) в общем случае АВ ¹ ВА.
Примеры.
а) Найдем ВА, где матрицы А и В взяты из предыдущего примера:
б) Найдем значение матричного многочлена В = 2А2 + 3А + 5Е, где
- единичная матрица третьего порядка.
Имеем
тогда
2.5. Задачи для самостоятельного решения
а) Найти произведение матриц АВ, где
б) Найти произведения АВ и ВА, где
в) Найти значение выражения 3А – ВС, где
Обратная матрица
Для квадратной матрицы А порядка n можно определить такую матрицу Х порядка n, что ХА = АХ = Е, где Е - единичная матрица порядка n.
Матрица Х называется обратной к матрице А и обозначается А-1.
Следующие условия являются необходимыми и достаточными, чтобы у матрицы А = (аij)n´m была определена обратная матрица:
а) n=m;
б) определитель матрицы А не равняется нулю:
Следующие преобразования строк матрицы называются элементарными:
а) умножение любой строки на число, отличное от нуля;
б) прибавление к строке другой строки, домноженной на любое число;
в) перестановка строк;
г) отбрасывание нулевой строки.
Для нахождения обратной матрицы А-1 применяется следующее правило:
а) выписывается матрица
(2.1)
б) с помощью элементарных преобразований над строками матрицы (2.1) превращают ее левую половину в единичную матрицу. Тогда ее правая половина превращается в обратную к ней матрицу А-1.
Примеры.
а) Для матрицы найдем обратную.
По приведенному выше правилу получаем:
Итак, обратная матрица А-1 равна
б) Решим матричное уравнение ХА + В = С, где
Умножим уравнение справа (порядок важен) на матрицу А-1. Тогда
ХАА-1 + ВА-1 = СА-1. Так как АА-1 = Е, то ХЕ + ВА-1 = СА-1 или
= СА-1- - ВА-1 =(С-В)А-1.
Найдем разность матриц
Вычислим матрицу А-1
Тогда Х = (С-В)А-1 =
2.7. Задачи для самостоятельного решения
а) Найти А-1, где
б) Решить матричное уравнение АХ =В, где
РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ
Линейные системы уравнений
Дана система m уравнений с n неизвестными
. (3.1)
Решением этой системы называется любая совокупность n чисел (a1, a2,..., an), которая при подстановке в систему вместо совокупности неизвестных обращает каждое уравнение системы в тождество. Система (3.1) называется совместной, если она имеет хотя бы одно решение. В противном случае она называется несовместной..
Матрицы
называются соответственно матрицей и расширенной матрицей
системы (3.1).
Исследование на совместность и решение системы производят обычно одновременно с помощью метода Гаусса. Напомним, что элементы аii в матрице А называются диагональными. Метод Гаусса заключается в элементарных преобразованиях строк матрицы А1 так, чтобы элементы преобразованной матрицы, стоящее ниже диагональных элементов, были нулевыми. При этом необходимо следить за диагональными элементами: они не должны обращаться в нуль. Если же при элементарных преобразованиях строк какой-либо диагональный элемент обратится в нуль (например, аii = 0), то поступать необходимо следующим образом: а) если в этом же столбце (где диагональный элемент оказался равен нулю) имеется ниже диагонального элемента ненулевой элемент, то соответствующую строку меняют местом с i-й строкой и продолжают преобразования; б) если же ниже нулевого диагонального элемента все элементы нулевые, то мы должны перейти к построению ступенчато-диагональной матрицы. Для этого сдвигаемся на один столбец вправо и считаем, что и диагональ матрицы тоже сдвинулась вправо и далее поступаем как описано выше. После всех преобразований матрица системы должна принять так называемый диагонально ступенчатый вид:
Ступенек в преобразованной матрице может быть несколько, причем разной длины. Элементы, которые будут стоять в углах таких ступенек, назовем ступенчато-диагональными (в данном примере это: а11, а22, а34, а45, а56, ...).
Примеры.
а) Проверим совместность системы
Для этого запишем расширенную матрицу системы и проведем элементарные преобразования над строками:
Из сказанного выше вытекает, что данная система совместна.
б) Исследуем на совместность систему
Записав расширенную матрицу системы, с помощью элементарных преобразований получаем
Таким образом, данная система несовместна.
Решение системы уравнений
После выяснения совместности системы строят ее общее решение. Для этого вновь полученную после элементарных преобразований матрицу записывают в виде системы, отбросив нулевые строки. Количество уравнений в этой системе определяет количество основных неизвестных. Все остальные неизвестные считаются свободными, им придаются произвольные значения. В качестве основных неизвестных берут неизвестные при ступенчато-диагональных элементах.
Примеры.
а) Построим общее решение системы из первого примера предыдущего пункта. После элементарных преобразований (см. выше) получаем систему
.
Уравнений два, поэтому считаем х1 и х2 (стоящие при ступенчато-диаго-нальных элементах) основными, а х3 и х4 свободными. Находим из системы основные неизвестные через свободные:
,
.
Таким образом, общее решение системы имеет вид:
б) Решим систему
Записываем расширенную матрицу системы и преобразуем ее
Выбираем в качестве основных переменные х1 и х3, как стоящие при ступенчато-диагональных элементах, переменная х2 берется свободной. Итак,
и общее решение системы
3.3. Задачи для самостоятельного решения
Исследовать и в случае совместности решить предлагаемые ниже системы линейных уравнений.
а) б)
в)