Теорема Коши. Физический смысл.
Теорема: (Коши о среднем)
Пусть функции f(x) и g(x) непрерывны на отрезке [a,b] и имеют производные на интервале (a,b), одновременно не обращающиеся в ноль. При этом g(b)-g(a)¹0 (что следует из условия g΄(x)¹0). Тогда на интервале (a,b) найдется точка ζ, для которой выполняется неравенство:
, a<ζ<b.
Доказательство: Вводим функцию H(x)=(f(b)-f(a))·g(x)-(g(b)-g(a))·f(x). Очевидно, что она непрерывна на [a,b] и имеет производную на (a,b), т.к. f(b)-f(a) и g(b)-g(a) постоянны. Кроме того, H(a)=H(b), поэтому по теореме Ролля найдется такая точка ζ из (a,b), что H΄(ζ)=0.
H΄(ζ)=(f(b)-f(a))·g΄(ζ)-(g(b)-g(a))·f΄(ζ)Þ(f(b)-f(a))·g΄(ζ)=(g(b)-g(a))·f΄(ζ) , т.к. по условию g(b)-g(a)¹0 и g΄(x)¹0 на (a,b).
Теорема доказана.
Физический смысл: Если f΄(x) и g΄(x) – скорости, то отношение перемещений равно отношению скоростей в какой-то момент времени.
Билет 14
Теорема о среднем Лагранжа.
Теорема:
Пусть функция непрерывна на отрезке и имеет производную на интервале . Тогда существует на интервале точка , для которой выполняется равенство
(1),
причем .
Доказательство:
В теореме Коши, возьмем . Тогда , , .
Из теоремы Коши: теорема доказана.
Физический смысл:
Найдется момент времени когда (средняя скорость равна мгновенной)
Геометрический смысл:
Теорема Лагранжа утверждает, что если кривая есть график непрерывной на функции, имеющей производную на , то на этой кривой существует точка, соответствующая некоторой абсциссе такая, что касательная к кривой в этой точке параллельна хорде, стягивающей концы кривой и .
Равенство (1) называется формулой (Лагранжа) конечных приращений. Промежуточное значение удобно записывать в виде , где есть некоторое число, удовлетворяющее неравенствам . Тогда формула Лагранжа примет вид
Она верна, очевидно, не только для , но и для .
Билет 15
Достаточное условие невозрастания (неубывания) функции на отрезке. Условие постоянства функции на отрезке.
Определение: Функция называется строго возрастающей на отрезке [a,b], если для любых точек , из [a,b], удовлетворяющих неравенству , имеет место неравенство .
Определение: Функция называется неубывающей на [a,b], если из того, что и следует, что .
Определение: Функция называется строго убывающей на отрезке [a,b], если из того, что и следует, что .
Определение: Функция называется невозрастающей на [a,b], если из того, что и следует, что .
Пример:
Если убывает на и на , то нельзя говорить, что убывает на .
Теорема 1: (необходимое условие возрастания (неубывания) функции в точке )
Если функция возрастает (неубывает) в точке и дифференцируема в , то .
Доказательство:
Теорема доказана.
Пример: возрастает в 0 и
Теорема 1’: (необходимое условие убывания (невозрастания) функции в точке )
Если функция убывает (невозрастает) в точке и дифференцируема в , то .
Доказательство – аналогично теореме 1.
Теорема 2: (достаточное условие возрастания)
Если функция дифференцируема в и , то возрастает в точке .
Доказательство:
возрастает.
Теорема доказана.
Замечание: Если в точке , то ни про возрастание, ни про убывание ничего сказать нельзя.
Билет 16