Функция. предел функции
3.1. Понятие функции. Основные определения.
О п р е д е л е н и е 1. Пусть даны два числовых множества и . Если каждому по некоторому правилу поставлено некото- рое число , то говорят, что на множестве задана функция и записывают : , или . При этом множество называется областью определения функции, а множество - областью значений функции. называется независимой переменной, или аргументом; - зависимой переменной.
ПРИМЕРЫ:
1. - функция заданная на всей числовой прямой
. Множество значений этой функции - промежуток . (см. рис. 1)
2. - эта функция задана на отрезке ; область её значений - . (см. рис. 2)
y y
0 x -1 0 1 x
Рис. 1 Рис. 2
3. Эта функция задана на множестве натуральных чисел Множество значений этой функции содержится в множестве натуральных чисел.
4. Функция Дирихле
Эта функция задана на всей числовой прямой , а область её значений состоит из двух точек 0 и 1.
5. Функция задана на всей числовой прямой , а множество её значений состоит из тёх точек: -1, 0, +1 (см. рис. 3)
6. - это целая часть действительного числа . Область определения этой функции - вся числовая прямая, область значений - целые числа. (см. рис. 4)
Y y
1 1
0 x -3 -2 -1 0 1 2 3 4 x
-1
(Рис. 3) (Рис. 4)
3.2 Способы задания функций.
1 Аналитический: Это означает что функция задаётся с помощью какой – либо формулы. Примеры функций из предыдущего пункта заданы аналитически.
2 Табличный. Зависимость между и задаётся с помощью некоторой таблицы, например,
…. | ||||
0,34 | 0,25 | ….. | 0,67 |
Такие таблицы чаще всего возникают при лабораторных исследования некоторых процессов, чаще всего в физике, химии и т.п. Они задают некоторую закономерность, которую иногда удаётся отобразить аналитически, т.е. удаётся установить закономерность.
3. Графический.. Чаще всего встречается в физике, меди -цине и т.п., когда зависимость между переменными опреде -ляяется с помощью так называемых самопишущих приборов, например, графики на осциллографе, кардиограмма, запись гелиографа, барографа и т.д.
3.3 Классификация функций.
- Основные элементарные функции:
1) - постоянная функция, которая при всех значениях принимает одно и то же значение.
2) Степенная функция , где - любое действительное число.
3) Показательные функции , в частности, .
4) Логарифмические функции , , в частности, .
5) Тригонометрические функции: .
6) Обратные тригонометрические функции: .
- Элементарные функции. - это функции, которые получаются из основных элементарных алгебраических операций, или с помощью суперпозиции этих функций. Например: .
Отдельно среди элементарных функций выделяют многочлены, т.е. функции вида:
;
рациональные дроби: , где и - многочлены степени и , соответственно
и иррациональные функции, т.е. функции, которые содержат хотя бы один корень любого порядка, например, и т.п.
3.4. Предел функции
О п р е д е л е н и е 1 Число называется пределом функции в точке (или при ), если
для любой сходящейся к точке последовательности значений аргумента ( ), соответствующая последовательность значений функции в этих точках сходится к числу
О п р е д е л е н и е 2 Число называется пределом функции в точке (или при ), если для любого наперёд заданного можно найти , такое что для всех ( ), удовлетворяющих неравенству , выполняется неравенство .
Можно доказать, что оба эти определения предела последовательности равносильны.
Для обозначения предела функции используется следую- щий символ: .
Замечание. Функция может иметь в точке только один предел, так как последовательность может иметь только один предел.
Свойства предела функции.
Пусть . Тогда
- Функции также имеют пределы в точке , равные соответственно, .
- Если для всех точек из некоторой окрестности точки выполняется неравенство: , то и для пределов выполняется такое же неравенство, т.е. .
- Если для всех точек некоторой окрестности точки выполняется неравенство и кроме того , то предел функции в точке также существует и равен
Эти свойства автоматически получаются из соответствую- щих свойств предела последовательности, на основании определения 1 предела функции.
3.5. Односторонние пределы.
О п р е е д е л е н и е 3 Число называется правым (левым) пределом функции в точке , если для любого существует такое, что для всех , удовлетворяющих неравенству , выполняется неравенство .
Обозначают односторонние пределы следующим образом:
Связь между односторонними пределами и пределом функции устанавливает следующая теорема.
ТЕОРЕМА 1. Функция имеет в точке
предел тогда и только тогда, когда в этой
точке существуют оба односторонних предела
и они равны между собой и равны пределу
функции в этой точке.
Доказательство. Пусть Тогда, согласно определению предела функции, слева и справа, для любого существуют числа и , такие что для всех , удовлетворяющих неравен- ству , и для всех , удовлетворяющих неравенству , выполняется неравенство . Возьмём . Тогда для всех
, удовлетворяющих неравенствам , , или неравенству , выполняется нера- венство , а это, согласно определению 2, и означает, что . Обратное утверждение оче -видно: если существует предел функции в точке , то существуют и односторонние пределы в этой точке и они равны между собой.
3.6. Предел функции при .
О п р е д е л е н и е 4. Число называется пределом функции при , если для любой беско -нечно большой последовательности значений аргу -мента соответствующая последовательность зна- чений этой функции сходится к .
Равносильное определение.
О п р е д е л е н и е 5. Число называется пределом функции при , если для любого существует , такое что для всех , удовле -творяющих неравенству , выполняется неравенство
.
3.7. Два замечательных предела.
! Первый замечательный предел:
С помощью 1-го замечательного предела можно вычислить многие другие пределы, например:
1)
2) сделаем замену переменной
, получим
2 Второй замечательный предел.
, или
легко получается тз определения числа (см. 2,4)
С его помощью также можно вычислять многие пределы., например:
1) сделаем замену при , тогда и получим
2)
.
3)