Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с .

Теорема Колмогорова показывает, что условия 1-6 являются необходимыми и достаточными для существования процесса с заданными конечномерными распределениями Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru .Таким образом, всегда найдется СП с заданным семейством конечномерных распределений. Более того, в общем случае такой процесс будет не единственным. Т.е. семейство конечномерных распределений задает целый класс случайных процессов, которые в некотором смысле являются эквивалентными.

СП Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru и Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru , определенные на одном и том же множестве Т и в одном и том же вероятностном пространстве Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru и принимающие значения в одном и том же измеримом пространстве, называются стохастически эквивалентными, если они совпадают почти наверное при любом фиксированном t: Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru .

Согласно общему духу ТВ, пренебрегающей событиями с Р=0 , считается что можно заменить изучение одного СП стохастически эквивалентным.

Моментные характеристики СП [1,4]

Раздел теории СП, занимающийся только моментами первых двух порядков, называется корреляционной теорией.

Для характеристики СВ были определены неслучайные числовые характеристики – матожидание Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru - среднее значение СВ; дисперсия Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru - разброс значений относительно Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru ; корреляционный (ковариационный) момент Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru , который характеризует степень линейной зависимости между СВ Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru и Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru .

Так как сечения СП представляют собой СВ, мы можем определить основные моментные характеристики СП. Моментные характеристик СП задают его простейшие свойства и вычисляются с помощью конечномерных распределений различных порядков.

Пусть Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru - действительный скалярный процесс. Неслучайная функция Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru , Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru , которая Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru равна матожиданию соответствующего сечения СП Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru , называется матожиданием СП. Его можно найти через одномерный закон распределения.

Если Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru , то СП называется центрированным. Центрированный СП можно получить Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru . Реализации Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru - отклонения от 0.

Дисперсия СП – это неслучайная функция СП, которая при каждом t равна дисперсии соответствующего сечения. Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru - можно найти через одномерный закон распределения.

Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru и Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru важны, но не характеризуют внутреннюю структуру процессов.

Неслучайная функция

Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru называется корреляционной функцией СП.

Т.е. корреляционная функция – функция двух аргументов - для каждой пары чисел Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru и Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru равна корреляционному моменту соответствующих сечений и характеризует степень их линейной зависимости. Для расчёта корреляционной функции необходимо знать двумерное распределение.

Если распределения Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru и Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru имеют плотности распределения, то

Удовлетворяющее условиям 1-6. Тогда существует вероятностное пространство и случайный процесс такие, что семейство конечномерных распределений СП совпадает с . - student2.ru


Наши рекомендации