Интегралы от тригонометрических функций. Примеры решений
На данном уроке мы рассмотрим интегралы от тригонометрических функций, то есть начинкой интегралов у нас будут синусы, косинусы, тангенсы и котангенсы в различных комбинациях. Все примеры будут разобраны подробно, доступно и понятно.
Для успешного изучения интегралов от тригонометрических функций Вы должны хорошо ориентироваться в простейших интегралах, а также владеть некоторыми приемами интегрирования. Ознакомиться с этими материалами можно на лекциях Неопределенный интеграл. Примеры решений и Метод замены переменной в неопределенном интеграле.
А сейчас нам потребуются Таблица интегралов, Таблица производных и Справочник тригонометрических формул. Все методические пособия можно найти на странице Математические формулы и таблицы. Рекомендую всё распечатать. Особо заостряю внимание на тригонометрических формулах, они должны быть перед глазами– без этого эффективность работы заметно снизится.
Но сначала о том, каких интегралов в данной статье нет. Здесь не найдется интегралов вида , – косинус, синус, умноженный на какой-нибудь многочлен (реже что-нибудь с тангенсом или котангенсом). Такие интегралы интегрируются по частям, и для изучения метода посетите урок Интегрирование по частям. Примеры решений. Также здесь не найдется интегралов с «арками» – арктангенсом, арксинусом и др., они тоже чаще всего интегрируются по частям.
При нахождении интегралов от тригонометрических функций используется ряд методов, в том числе:
- использование тригонометрических формул;
- понижение степени подынтегральной функции (частный случай п.1);
- метод замены переменной;
- универсальная тригонометрическая подстановка(частный случай п.3).
Следует отметить, что данное разделение весьма условно, поскольку очень часто все вышеперечисленные правила используются одновременно в одном примере.
Пример 1
Найти неопределенный интеграл.
Сначала полное решение, потом комментарии.
Используем формулу:
(1) Мы видим, что в подынтегральном выражении находится произведение двух функций. К сожалению, в интегральном исчислении нет удобной формулы для интегрирования произведения в виде , поэтому приходится прибегать к различным ухищрениям.
В данном случае мы прерываем решение значком и поясняем, что используется тригонометрическая формула. Данная формула превращает произведение в сумму.
(2) Используем свойства линейности неопределенного интеграла – интеграл от суммы равен сумме интегралов; константу можно (и нужно) вынести за знак интеграла.
Справка: При работе с тригонометрическими функциями следует помнить, что:
Косинус – это четная функция, то есть
, - минус исчезает без всяких последствий.
В рассматриваемом примере: .
Синус – функция нечетная:
, – здесь минус, наоборот, не пропадает, а выносится.
(3) Под интегралами у нас сложные функции (косинусы не просто от x, а от сложного аргумента). Это простейшие из сложных функций, интегралы от них удобнее найти методом подведения под знак дифференциала.
(4) Используем табличную формулу , единственное отличие в том, что вместо «икса» у нас сложное выражение.
Готово.
Пример 2
Найти неопределенный интеграл
.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Пример 3
Найти неопределенный интеграл
.
Как Вы, наверное, заметили, в таблице интегралов нет интеграла от тангенса и котангенса, но, тем не менее, такие интегралы найти можно.
(1) Используем тригонометрическую формулу .
(2) Подводим функцию под знак дифференциала.
(3) Используем табличный интеграл .
Пример 4
Найти неопределенный интеграл
.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Пример 5
Найти неопределенный интеграл
.
Сначала решение:
(1) Используем формулу
.
(2) Используем основное тригонометрическое тождество , из которого следует, что .
(3) Почленно делим числитель на знаменатель.
(4) Используем свойство линейности неопределенного интеграла.
(5) Интегрируем с помощью таблицы.
Пример 6
Найти неопределенный интеграл
.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Также существуют интегралы от тангенсов и котангенсов, которые находятся в более высоких степенях.Интегралы от тангенса (котангенса) в четвертой и пятой степенях можно раздобыть на странице Сложные интегралы.