Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности

ВОПРОС№23 Окружность

Окружность. Центр окружности. Радиус окружности.

Уравнение окружности. Уравнение касательной к окружности.

Условие касания прямой и окружности.

Окружностью ( рис.1 ) называется геометрическое место точек, равноудалённых от данной точки О, называемой центром окружности, на расстояние R . Число R > 0 называется радиусом окружности.

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru

Уравнение окружности радиуса R с центром в точке О ( х0 , у 0 ) имеет вид:

( х – х0 ) 2 + ( у – у 0 ) 2 = R 2 .

Если центр окружности совпадает с началом координат, то уравнение окружности упрощается:

х 2 + у 2 = R 2 .

Пусть Р ( х1 , у 1 ) – точка окружности ( рис.1 ), тогда уравнение касательной к окружности в данной точке имеет вид:

( х1 – х0 ) ( х – х0 ) + ( у1 – у 0 ) ( у – у 0 ) = R 2 .

Условие касания прямой y = m x + k и окружности х 2 + у 2 = R 2 :

k 2 / ( 1 + m 2 )= R 2 .

ВОПРОС№24,25,26

Эллипс.

Определение 11.2. Эллипсомназывается множество точек плоскости, для которых сумма расстояний до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.

Замечание. При совпадении точек F1 и F2 эллипс превращается в окружность.

Выведем уравнение эллипса, выбрав декартову систему

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru у М(х,у) координат так, чтобы ось Ох совпала с прямой F1F2, начало

r1 r2 координат – с серединой отрезка F1F2. Пусть длина этого

отрезка равна 2с, тогда в выбранной системе координат

F1 O F2 x F1(-c, 0), F2(c, 0). Пусть точка М(х, у) лежит на эллипсе, и

сумма расстояний от нее до F1 и F2 равна 2а.

Тогда r1 + r2 = 2a, но Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru ,

поэтому Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Введя обозначение b² = a²-c² и проведя несложные алгебраические преобразования, получим каноническое уравнение эллипса: Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru (11.1)

Определение 11.3. Эксцентриситетом эллипса называется величина е=с/а (11.2)

Определение 11.4. Директрисой Di эллипса, отвечающей фокусу Fi, называется прямая, расположенная в одной полуплоскости с Fi относительно оси Оу перпендикулярно оси Ох на расстоянии а/е от начала координат.

Замечание. При ином выборе системы координат эллипс может задаваться не каноническим уравнением (11.1), а уравнением второй степени другого вида.

Свойства эллипса:

1) Эллипс имеет две взаимно перпендикулярные оси симметрии (главные оси эллипса) и центр симметрии (центр эллипса). Если эллипс задан каноническим уравнением, то его главными осями являются оси координат, а центром – начало координат. Поскольку длины отрезков, образованных пересечением эллипса с главными осями, равны 2а и 2b (2a>2b), то главная ось, проходящая через фокусы, называется большой осью эллипса, а вторая главная ось – малой осью.

2) Весь эллипс содержится внутри прямоугольника Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru

3) Эксцентриситет эллипса e < 1.

Действительно, Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru

4) Директрисы эллипса расположены вне эллипса (так как расстояние от центра эллипса до директрисы равно а/е, а е<1, следовательно, а/е>a, а весь эллипс лежит в прямоугольнике Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru )

5) Отношение расстояния ri от точки эллипса до фокуса Fi к расстоянию di от этой точки до отвечающей фокусу директрисы равно эксцентриситету эллипса.

Доказательство.

Расстояния от точки М(х, у) до фокусов эллипса можно представить так:

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Составим уравнения директрис:

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru (D1), Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru (D2). Тогда Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Отсюда ri / di = e, что и требовалось доказать.

Гипербола.

Определение 11.5. Гиперболойназывается множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r1 - r2| = 2a, откуда Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Если обозначить b² = c² - a², отсюда можно получить

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru - каноническое уравнение гиперболы. (11.3)

Определение 11.6. Эксцентриситетом гиперболы называется величина е = с / а.

Определение 11.7. Директрисой Di гиперболы, отвечающей фокусу Fi, называется прямая, расположенная в одной полуплоскости с Fi относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

Свойства гиперболы:

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru и Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru .

3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru , (11.3`)

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния ri от точки гиперболы до фокуса Fi к расстоянию di от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

Доказательство можно провести так же, как и для эллипса.

Парабола.

Определение 11.8. Параболой называется множество точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой. Точка F называется фокусом параболы, а прямая – ее директрисой.

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru у Для вывода уравнения параболы выберем декартову

систему координат так, чтобы ее началом была середина

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru d M(x,y) перпендикуляра FD, опущенного из фокуса на директри-

r су, а координатные оси располагались параллельно и

перпендикулярно директрисе. Пусть длина отрезка FD

D O F x равна р. Тогда из равенства r = d следует, что

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru поскольку

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru Алгебраическими преобразованиями это уравнение можно привести к виду: y² = 2px , (11.4)

называемому каноническим уравнением параболы. Величина р называется параметромпараболы.

Свойства параболы:

1) Парабола имеет ось симметрии (ось параболы). Точка пересечения параболы с осью называется вершиной параболы. Если парабола задана каноническим уравнением, то ее осью является ось Ох, а вершиной – начало координат.

2) Вся парабола расположена в правой полуплоскости плоскости Оху.

Замечание. Используя свойства директрис эллипса и гиперболы и определение параболы, можно доказать следующее утверждение:

Множество точек плоскости, для которых отношение е расстояния до некоторой фиксированной точки к расстоянию до некоторой прямой есть величина постоянная, представляет собой эллипс (при e<1), гиперболу (при e>1) или параболу (при е=1).

Приведение уравнения второго порядка к каноническому виду.

Определение 11.9. Линия, определяемая общим уравнением второго порядка

Приведение уравнения второго порядка к каноническому виду. Окружность. Центр окружности - student2.ru , (11.5)

называется алгебраической линией второго порядка.

Наши рекомендации