Интерполяционный многочлен Лагранжа
Боровец Д.С.
студент 2 курса
заочной формы обучения,
направление «Физико-математическое
образование»
профиль информатика
Курсовая работа
«Интерполяция и наилучшие приближения».
Руководитель:
к.п.н., доцент
Артюхина М.С.
Арзамас, 2014
Содержание.
Введение …………………………………………………………....................………..3
1. Разделенные разности
2. Интерполяционный многочлен Лагранжа
3Интерполирование по схеме Эйткена
4. Интерполяционный многочлен Ньютона
5Приближение и интерполирование функций,
6 Аппроксимация функций методом наименьших квадратов
Заключение………………....................……………………………………………….19
Список литературы…………………………………………...................……………20
Введение.
Если задана функция y(x), то это означает, что любому допустимому значению х сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую функцию j(х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают у(х)»j(х).
Большая часть классического численного анализа основывается на приближении многочленами, так как с ними легко работать. Однако для многих целей используются и другие классы функций.
Выбрав узловые точки и класс приближающих функций, мы должны ещё выбрать одну определённую функцию из этого класса посредством некоторого критерия — некоторой меры приближения или «согласия». Прежде чем начать вычисления, мы должны решить также, какую точность мы хотим иметь в ответе и какой критерий мы изберём для измерения этой точности.
Всё изложенное можно сформулировать в виде четырёх вопросов:
· Разделенные разности
· Интерполяционный многочлен Лагранжа
· Интерполяционный многочлен Ньютона
· Аппроксимация функций методом наименьших квадратов
Существуют 3 класса или группы функций, широко применяемых в численном анализе. Первая группа включает в себя линейные комбинации функций 1, х, х2, …, хn, что совпадает с классом всех многочленов степени n (или меньше). Второй класс образуют функции cos aix, sin aix. Этот класс имеет отношение к рядам Фурье и интегралу Фурье. Третья группа образуется функциями e-az. Эти функции встречаются в реальных ситуациях. К ним, например, приводят задачи накопления и распада.
Что касается критерия согласия, то классическим критерием согласия является «точное совпадение в узловых точках». Этот критерий имеет преимущество простоты теории и выполнения вычислений, но также неудобство из-за игнорирования шума (погрешности, возникающей при измерении или вычислении значений в узловых точках). Другой относительно хороший критерий — это «наименьшие квадраты». Он означает, что сумма квадратов отклонений в узловых точках должна быть наименьшей возможной или, другими словами, минимизирована. Этот критерий использует ошибочную информацию, чтобы получить некоторое сглаживание шума. Третий критерий связывается с именем Чебышева. Основная идея его состоит в том, чтобы уменьшить максимальное отклонение до минимума. Очевидно, возможны и другие критерии.
Более конкретно ответить на поставленные 4 вопроса можно лишь исходя из условий и цели каждой отдельной задачи.
Разделенные разности
Часто экспериментальные данные функциональной зависимости представляются таблицей, в которой шаг по независимой переменной не постоянен. Для работы с таким представлением функции конечные разности и конечно-разностные операторы не пригодны. В этом случае первостепенную роль играют разделенные разности.
Разделенную разность функции f(x) для некоторых двух точек и определяют следующей дробью:
Для построения степенного многочлена, проходящего через заданные точки, необходимо иметь число точек на единицу больше, чем степень многочлена. Согласно определению разделенной разности число их для n точек равно числу сочетаний из n по 2. Это во много раз больше, чем необходимо для построения кривых, проходящих через n точек. Из опыта работы с конечными разностями видно, что разделенных разностей из всего множества достаточно выбрать всего n, но выбрать так, чтобы в их образование входили все (n+1) точек таблицы.
Вполне разумно вычислять разделенные разности только для соседних значений функции в таблице. В этом случае говорят об упорядоченных разделенных разностях. Аргументу табличной функции присваиваются индексы из чисел натурального ряда, начиная с нуля, в результате чего обозначения разделенных разностей для i-той строки таблицы будут .
Повторная разность от разделенной разности есть разделенная разность второго порядка:
В общем случае разделенная разность n-го порядка имеет вид:
Интерполяционный многочлен Лагранжа
Произведения из скобочных сомножителей в знаменателе каждого слагаемого напоминают своим видом некий степенной многочлен от переменной , который своими корнями имеет значения , исключая . Многочлен от x с корнями в этих же точках, включая и , будет иметь вид:
Удаляя тот или иной сомножитель из , можно по желанию исключить ненужный нуль многочлена. Если взять i-тое слагаемое без из выражения для разделенной разности n-го порядка и умножить его на , в котором отсутствует сомножитель , то многочлен степени n будет обладать следующими свойствами:
Если умножить на , то полученный многочлен степени n будет проходить через точку с координатами и будет равен нулю во всех точках . Сумма таких многочленов по всем определяет интерполяционный многочлен Лагранжа степени n.
.