Разложение матриц на треугольные множители. Схема Холецкого

Лекция 3. Метод Холецкого

Метод Гаусса, подробно рассмотренный выше, был и остается основным инструментом для решения систем линейных уравнений. Основным, но не единственным. Нам следует получить представление еще о двух группах методов: 1) методы разложения матрицы на треугольные множители; 2) итерационные методы.

Рассмотрим метод Холецкого, который предназначен для решения систем с симметричными положительно определенными матрицами. Почему нас интересуют именно такие матрицы?

Во-первых, как известно, матрица жесткости (см (1.1)) является симметричной матрицей.

Во-вторых, вспомним, что при использовании метода конечных элементов потенциальная энергия конструкции определяется выражением

Разложение матриц на треугольные множители. Схема Холецкого - student2.ru , (3.1)

где q – вектор перемещений конструкции, а K – ее матрица жесткости.

Аналогично, для кинетической энергии системы получено

Разложение матриц на треугольные множители. Схема Холецкого - student2.ru , (3.2)

где M – матрица инерции.

В исходном, недеформированном, состоянии Разложение матриц на треугольные множители. Схема Холецкого - student2.ru потенциальная энергия деформации конструкции равна нулю. В то же время любые перемещения точек конструкции приводят к ее деформации и, значит, к увеличению П по сравнению с недеформированным состоянием. Таким образом, исходя только из соображений физического смысла, мы пришли к выводу о положительной определенности матрицы жесткости. Подобные соображения можно привести и для матрицы инерции.

Теорема Холецкого. Если A – симметричная положительно определенная матрица, то существует действительная невырожденная нижняя треугольная матрица L такая, что Разложение матриц на треугольные множители. Схема Холецкого - student2.ru , т.е.

Разложение матриц на треугольные множители. Схема Холецкого - student2.ru

(3.3)

Согласно этой теореме мы можем заменить в исходной системе линейных уравнений Разложение матриц на треугольные множители. Схема Холецкого - student2.ru матрицу Разложение матриц на треугольные множители. Схема Холецкого - student2.ru на ее разложение:

Разложение матриц на треугольные множители. Схема Холецкого - student2.ru . (4)

Если мы обозначим Разложение матриц на треугольные множители. Схема Холецкого - student2.ru , то можем легко решить задачу в два этапа:

1) Разложение матриц на треугольные множители. Схема Холецкого - student2.ru - определяем y;

2) Разложение матриц на треугольные множители. Схема Холецкого - student2.ru - определяем x.

Обе эти системы с треугольными матрицами и, следовательно, легко решаются. То есть разложение Холецкого дает возможность заменить сложную задачу решения системы уравнений с полностью заполенной матрицей двумя простыми задачами – решение двух систем с треугольной матрицей.

Остается только научиться строить матрицу L.

Вспомним определение произведения матриц: Разложение матриц на треугольные множители. Схема Холецкого - student2.ru . Следовательно, элемент Разложение матриц на треугольные множители. Схема Холецкого - student2.ru есть произведение i-й строки матрицы L на j-й столбец матрицы Разложение матриц на треугольные множители. Схема Холецкого - student2.ru :

Разложение матриц на треугольные множители. Схема Холецкого - student2.ru . (3.5)

Учтем симметричность матрицы A. Это значит, что мы можем ограничиться рассмотрением только элементов нижнего треугольника матрицы A Разложение матриц на треугольные множители. Схема Холецкого - student2.ru :

Разложение матриц на треугольные множители. Схема Холецкого - student2.ru . (3.6)

Теперь для получения удобных для использования формул полезно записать это выражение отдельно для поддиагональных и для диагональных элементов матрицы A:

Разложение матриц на треугольные множители. Схема Холецкого - student2.ru (3.7)

Кстати, эти формулы позволяют понять, почему в теореме Холецкого содержится ограничение, которое требует положительной определенности матрицы Разложение матриц на треугольные множители. Схема Холецкого - student2.ru . Если попытаться применить формулы (3.7) к матрице, не являющейся положительно определенной, то это приведет либо к получению отрицательного числа под знаком квадратного корня при вычислении Разложение матриц на треугольные множители. Схема Холецкого - student2.ru , либо к некорректной операции деления на ноль при вычислении Разложение матриц на треугольные множители. Схема Холецкого - student2.ru .

Пример. Найти по схеме Холецкого решение системы:

Разложение матриц на треугольные множители. Схема Холецкого - student2.ru (3.8)

Матрица этой системы

Разложение матриц на треугольные множители. Схема Холецкого - student2.ru (3.9)

в результате применения формул (3.7)

Разложение матриц на треугольные множители. Схема Холецкого - student2.ru

представляется в виде разложения Разложение матриц на треугольные множители. Схема Холецкого - student2.ru , где

Разложение матриц на треугольные множители. Схема Холецкого - student2.ru (3.10)

Теперь находим решение исходной системы путем решения двух треугольных систем:

1) Разложение матриц на треугольные множители. Схема Холецкого - student2.ru

2) Разложение матриц на треугольные множители. Схема Холецкого - student2.ru

Наши рекомендации