Теория электролитической диссоциации Аррениуса
Протонная теория Брёнстеда
Согласно теории Бренстеда кислота является донором,
а основание - акцептором протонов;
кислоты и основания существуют только как
сопряженные пары;
протон не существует в растворе в свободном виде,
в воде он образует катион оксония.
Теория электролитической диссоциации Аррениуса
Согласно Аррениусу кислотами являются
электролиты, при диссоциации которых в
водных растворах образуются ионы
водорода (протоны)
Основаниями Аррениуса являются электролиты,
при диссоциации которых в водных растворах
образуются гидроксид-ионы
Электронная теория кислот и оснований,
Или Теория Льиса
Электронная теория кислот и оснований является
наиболее общей теорией кислот и оснований
По Льису- кислоты - это вещества, способные принимать
электронную пару (акцетор электронной пары),
а основания - вещества, способные давать
электронную пару (доноры электронной пары)
Таким образом, теория кислот и оснований Бренстеда есть
Метод электронного балланса
В этом методе сравнивают степени окисления атомов в исходных и конечных веществах, руководствуясь правилом: число электронов, отданных восстановителем, должно равняться числу электронов, присоединенных окислителем. Для составления уравнения надо знать формулы реагирующих веществ и продуктов реакции. Последние определяются либо опытным путем, либо на основе известных свойств элементов. Рассмотрим применение этого метода на примерах.
Электронный баланс- метод нахождения коэффициентов в уравнениях окислительно-восстановительных реакций, в котором рассматривается обмен электронами между атомами элементов, изменяющих свою степень окисления. Число электронов, отданное восстановителем равно числу электронов, получаемых окислителем.
Уравнение составляется в несколько стадий:
1. Записывают схему реакции.
KMnO4 + HCl ® KCl + MnCl2 + Cl2 + H2O
2. Проставляют степениокисления над знаками элементов, которые меняются.
KMn+7O4 + HCl-1 ® KCl + Mn+2Cl2 + Cl20 + H2O
3. Выделяют элементы, изменяющие степени окисления и определяют число электронов, приобретенных окислителем и отдаваемых восстановителем.
Mn+7 + 5ē ® Mn+2
2Cl-1 - 2ē ® Cl20
4. Уравнивают число приобретенных и отдаваемых электронов, устанавливая тем самым коэффициенты для соединений, в которых присутствуют элементы, изменяющие степень окисления.
Mn+7 + 5ē ® Mn+2 | |
2Cl-1 - 2ē ® Cl20 |
––––––––––––––––––––––––
2Mn+7 + 10Cl-1 ® 2Mn+2 + 5Cl20
5. Подбирают коэффициенты для всех остальных участников реакции.
2KMn+7O4 + 16HCl-1 ® 2KCl + 2Mn+2Cl2 + 5Cl20 + 8H2O
B Электронно-ионный баланс (метод полуреакций) метод нахождения коэффициентов, в которомрассматривается обмен электронами между ионами в растворе с учетом характера среды
_______________________________
50. Электродный потенциал, разность электростатических потенциалов между электродом и находящимся с ним в контакте электролитом. Возникновение электродный потенциал обусловлено пространственным разделением зарядов противоположного знака на границе раздела фаз и образованием двойного электрического слоя.
Стандартный водоро́дный электро́д — электрод, использующийся в качестве электрода сравнения при различных электрохимических измерениях и в гальванических элементах.
Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.
,
51.Окислительно-восстановительный потенциал (редокс-потенциал от англ. redox — reduction-oxidation reaction, Eh или Eh) — мера способности химического вещества присоединять электроны (восстанавливаться[1]). Окислительно-восстановительный потенциал выражают вмилливольтах (мВ). Примером окислительно-восстановительного электрода: Pt/Fe3+,Fe2+ Окислительно-восстановительный потенциал определяют как электрический потенциал, устанавливающийся при погружении платины или золота (инертный электрод) в окислительно-восстановительную среду, то есть в раствор, содержащий как восстановленное соединение (Ared), так и окисленное соединение (Aox). Если полуреакцию восстановления представить уравнением:
Aox + n·e− → Ared,
то количественная зависимость окислительно-восстановительного потенциала от концентрации (точнее активностей) реагирующих веществ выражается уравнением Нернста.
Окислительно-восстановительный потенциал определяют электрохимическими методами с использованием стеклянного электрода с red-ox функцией[2] и выражают в милливольтах (мВ) относительно стандартного водородного электрода в стандартных условиях.
Положительный окислительно-восстановительный потенциал электрода Cu2+│Cu (E° = +0,34 B) показывает, что в стандартных условиях водород окисляется ионами меди, медный электрод по отношению к водороду является катодом, электроны по внешней цепи переходят от водорода к меди:
Отрицательный потенциал Zn2+│Zn (E° = –0,76 B) означает, что в стандартных условиях цинковый электрод может быть только анодом, его окислительные функции по отношению к водородному электроду 2H+│H2 отрицательные. Цинк здесь восстанавливает катионы водорода, электроны во внешней цепи перетекают от цинка к водороду:
Суммируя эти реакции, получим
|
то есть электрод с более положительным значением стандартного электродного потенциала является окислителем по отношению к электроду с менее положительным значением E°.
52.Для расстановки коэффициентов в уравнениях окислительно-восстановительных реакций используют два основных метода – электронный баланс и ионно-электронный метод (метод полуреакций).
Электронный баланс основан на схематической записи изменения степеней окисления окислителя и восстановителя по отдельности и уравнивания числа переданных электронов. Например, для реакции описываемой схемой
NH3 + O2 N2 + H 2O
сначала определяем элементы, меняющие свои степени окисления. В левой у азота степень окисления -3, в правой – 0. Азот повышает свою степень окисления и является восстановителем.
N-3 N0
В ходе реакции элемент азот окисляется и, следовательно, отдает электроны. Для того, чтобы выполнялся закон сохранения заряда, один азот должен отдать три электрона:
N-3 - 3е N0
С учетом того, что в правой части схемы записана молекула азота, удваиваем все коэффициенты:
2N-3 - 6е N20
В левой части кислород имеет степень окисления 0, в правой -2, т. е. понижает свою степень окисления и в данной реакции является окислителелем:
О0 О-2
Для этого атому кислорода необходимы два электрона:
О0 + 2е О-2
С учeтом того, что в реакции участвует молекулярный кислород, окончательно для кислорода получим:
О20 + 4е 2O-2
Запишем процессы окисления и восстановления в одну схему:
Число электронов, отданных восстановителем, должно быть равно числу электронов, принятых окислителем, поэтому домножаем обе полуреакции на коэффициенты, которые доводят число электронов в каждом процессе до наименьшего общего кратного. Этот коэффициент для первой полуреакции равен 2, для второй - 3, при этом число электронов в обоих полуреакциях будет по 12:
Из полученной схемы следует, что в левой части должно быть 4 атома азота в степени окисления -3, следовательно у аммиака коэффициент равен 4, в правой части будет две молекулы азота. В левой части коэффициент у молекулярного кислорода равен 3, в правой части должно быть 6 атомов кислорода в степени окисления -2. Получаем уравнение:
4NH3 + 3O2 = 2N2 + 6H2O
Проверяем число атомов водорода в обеих частях - в левой 12 и в правой 12.
Метод электронного баланса применяется для составления уравнений окислительно восстановительных реакций, протекающих в газовой или твердой фазе, если реакция протекает в растворе или расплаве с участием электролитов, то используется метод электронно-ионного баланса (метод полуреакций).
Активность твердого вещества (aтв) принимается равной единице, поэтому в случае рассматриваемого нами металлического электрода (aM) уравнение Нернста упрощается:
|
Потенциал электрода, как видно из этого уравнения, зависит от активности ионов которые являются потенциалопределяющими. Разность потенциалов стандартного водородного электрода и какого-нибудь другого электрода, измеренная при стандартных условиях, называется стандартным электродным потенциалом и обозначается E°.
Следует подчеркнуть, что:
Уравнение Нернста отдельного электрода условились писать для процесса восстановления независимо от того, в какую сторону сдвинуто равновесие, то есть под знаком логарифма в уравнении Нернста в числителе стоит окисленная форма реагента, в знаменателе – восстановленная.
В дробном индексе при E и E° над чертой ставится окисленная форма полуэлемента, под чертой – восстановленная.
Активности твердых веществ в уравнение Нернста не входят.
52.Комплексные соединения (лат. complexus — сочетание, обхват) или координационные соединения (лат. co — «вместе» и ordinatio — «упорядочение») — частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами. Теория комплексных соединений (координационная теория) была предложена в 1893 г. А. Вернером.
В молекуле любого комплексного соединения один из ионов, обычно положительно заряженный, занимает центральное место и называетсякомплексообразователем (центральным ионом). Вокруг него в непосредственной близости расположено (координировано) некоторое число противоположно заряженных ионов или нейтральных молекул, называемых лигандами и образующих внутреннюю координационную сферу. Остальные ионы находятся на более далеком расстоянии от центрального иона и составляют внешнюю координационную сферу.
Количество лигандов, окружающих центральный ион, называется координационным числом.
Внутренняя сфера комплекса в значительной степени сохраняет стабильность в растворе (ее границы в формуле показывают квадратными скобками). Ионы внешней сферы в растворе легко отщепляются.
Важнейшей характеристикой комплексообразователя является количество химических связей, которые он образует с лигандами, или координационное число (КЧ). Эта характеристика комплексообразователя определяется главным образом строением его электронной оболочки и обусловливается валентными возможностями центрального атома или условного иона-комплексообразователя (подробнее см. >>>).
Когда комплексообразователь координирует монодентатные лиганды, то координационное число равно числу присоединяемых лигандов. А число присоединяемых к комплексообразователю полидентатных лигандов всегда меньше значения координационного числа.
Между значениями координационного числа и степенью окисления элемента-комплексообразователя существует определенная зависимость. Так, для элементов-комплексообразователей, имеющих степень окисления +I (AgI, CuI, AuI, II и др.) наиболее характерно координационное число 2 – например, в комплексах типа [Ag(NH3)2]+, [Cu(CN)2]-, [IBr2]-.
Элементы-комплексообразователи со степенью окисления +II (ZnII, PtII, PdII, CuII и др.) часто образуют комплексы, в которых проявляют координационное число 4, такие как [Zn(NH3)4]2+, [PtCl4]2-, [Pd(NH3)2Cl2]0,[ZnI4]2-, [Cu(NH3)4]2+.
В аквакомплексах координационное число комплексообразователя в степени окисления +II чаще всего равно 6: [Fe(H2O)6]2+, [Mg(H2O)6]2+, [Ni(H2O)6]2+.
Элементы-комплексообразователи, обладающие степенью окисления +III и +IV (PtIV, AlIII, CoIII, CrIII, FeIII), имеют в комплексах, как правило, КЧ 6.
Например, [Co(NH3)6]3+, [Cr(OH)6]3-, [PtCl6]2- , [AlF6]3-, [Fe(CN)6]3-.
Известны комплексообразователи, которые обладают практически постоянным координационным числом в комплексах разных типов. Таковы кобальт(III), хром(III) или платина(IV) с КЧ 6 и бор(III), платина(II), палладий(II), золото(III) с КЧ 4. Тем не менее большинство комплексообразователей имеет переменное координационное число. Например, для алюминия(III) возможны КЧ 4 и КЧ 6 в комплексах [Al(OH)4]- и[Al(H2O)2(OH)4]-.
Координационные числа 3, 5, 7, 8 и 9 встречаются сравнительно редко. Есть всего несколько соединений, в которых КЧ равно 12 – например, таких как K9[Bi(NCS)12].
Заряд комлексного иона равен алгебраической сумме зарядов комплексообразователя и лигандов.
53. По заряду комплекса
1) Катионные комплексы образованы в результате координации вокруг положительного иона нейтральных молекул (H2O, NH3 и др.).
[(Zn(NH3)4)]Cl2 — хлорид тетраамминцинка(II)
[Co(NH3)6]Cl2 — хлорид гексаамминкобальта(II)
2) Анионные комплексы: в роли комплексообразователя выступает атом с положительной степенью окисления, а лигандами являются простые или сложные анионы.
K2[BeF4] — тетрафторобериллат(II) калия
Li[AlH4] — тетрагидридоалюминат(III) лития
K3[Fe(CN)6] — гексацианоферрат(III) калия
3) Нейтральные комплексы образуются при координации молекул вокруг нейтрального атома, а также при одновременной координации вокруг положительного иона — комплексообразователя отрицательных ионов и молекул.
[Ni(CO)4] — тетракарбонилникель
[Pt(NH3)2Cl2] — дихлородиамминплатина(II)
По природе лиганда
1) Аммиакаты — комплексы, в которых лигандами служат молекулы аммиака, например: [Cu(NH3)4]SO4, [Co(NH3)6]Cl3, [Pt(NH3)6]Cl4 и др.
2) Аквакомплексы — в которых лигандом выступает вода: [Co(H2O)6]Cl2, [Al(H2O)6]Cl3 и др.
3) Карбонилы — комплексные соединения, в которых лигандами являются молекулы оксида углерода(II): [Fe(CO)5], [Ni(CO)4].
4) Ацидокомплексы — комплексы, в которых лигандами являются кислотные остатки. К ним относятся комплексные соли: K2[PtCl4], комплексные кислоты: H2[CoCl4], H2[SiF6].
5) Гидроксокомплексы — комплексные соединения, в которых в качестве лигандов выступают гидроксид-ионы: Na2[Zn(OH)4], Na2[Sn(OH)6] и др.
54. Природа химической связи в КС принципиально не отличается от ее природы в простых соединениях.
Во внутренней сфере между комплексообразователем и лигандами формируются полярные ковалентные связи. Частицы внешней сферы удерживаются около комплекса за счет электростатического ионного взаимодействия, т.е. характер связи преимущественно ионный.
Для объяснения химической связи в КС используют три основных концепции: методы валентных связей (ВС) и молекулярных орбиталей (МО), теорию кристаллического поля (ТКП).
Рассмотрим более простой, но достаточно универсальный метод ВС. Химическую связь в комплексе, т.е. между комплексообразователем и лигандами обычно объясняют с позиций донорно-акцепторного механизма. При этом, как правило, лиганды предоставляют неподеленные электронные пары, а комплексообразователи - свободные орбитали.
Для оценки возможности протекания реакции замещения лигандов можно использовать спектрохимический ряд, руководствуясь тем, что более сильные лиганды вытесняют из внутренней сферы менее сильные.
55. В растворах комплексных соединений могут происходить разнообразные сложные превращения, определяемые природой как самого комплексного соединения, так и растворителя.
Это, во-первых, диссоциация на комплексные и внешнесферные ионы, затем – диссоциация комплексного иона или нейтрального комплекса, сопровождаемая замещением лиганда во внутренней сфере на молекулы растворителя.
Кроме того, комплексы могут участвовать в разнообразных окислительно-восстановительных процессах, если в состав комплексного иона или растворителя входят ионы или молекулы с ярко выраженными окислительными или восстановительными свойствами.
Константы нестойкости
Если вместо равновесия в реакциях образования комплексов рассматривать обратный процесс – реакции диссоциации комплексов (или реакции обмена лигандов на молекулы растворителя), то соответствующие константы будут носить название ступенчатых констант нестойкости комплексов:
[ML] M + L; K1(нест) = [M] ´ [L] / [ML]
[ML2] [ML] + L ; K2(нест) = [ML] ´ [L] / [ML2]
…….
[MLn] [ML(n-1)] + L; Kn(нест) = [ML(n-1)] ´ [L] / [MLn];
и общих (суммарных) констант нестойкости комплексов:
[ML] M + L; b1(нест) = [M] ´ [L] / [ML]
[ML2] M + 2 L; b2(нест) = [M] ´ [L]2 / [ML2]
[ML3] M + 3 L; b3(нест) = [M] ´ [L]3 / [ML3]
…….
[MLn] M + n L; bn(нест) = [M] ´ [L]n / [MLn]
Ступенчатые и общие константы образования и нестойкости комплексов соотносятся друг с другом как обратные величины:
bn(обр) = 1 / b n(нест); Kn(обр) = 1 / Kn(нест),
поэтому для сравнения прочности комплексов могут использоваться справочные данные как по значениям констант образования, так и констант нестойкости.
56.
Рассмотрим вначале наиболее простой, но весьма распространенный случай комплексов, образуемых лигандами L типа (СН3)3Р, NH3, H2O, ОН-, Н-, которые используют для связывания с центральным атомом металла неподеленную гибридную пару электронов или пару электронов на s-орбитали (гибрид-ион). Начнем рассмотрение с наиболее характерного типа координации — октаэдрического. Координационные связи в комплексе МL6k+, где М — переходный металл, образуются при донировании электронов с сигма-орбиталей лигандов на вакантные 3d-, 4s-, 4p- орбитали металла (возьмем атом металла третьего периода). Чтобы рассчитать валентные МО комплекса, выберем координатные оси, как показано на рис. 1, расположив вдоль них лиганды.
Полный базис валентных АО состоит из 15 орбиталей: девяти — металла, шести — лигандов. Только такие комбинации лигандных АО будут обобщаться в форме МО с различными орбиталями металла, которые преобразуются по одинаковым представлениям симметрии в точечной группе ОА. Нетрудно подобрать соответствующие комбинации сигма-АО лигандов (называемые групповыми орбиталями). Рис. 2,а иллюстрирует выбор групповой орбитали еg-симметрии, комбинирующейся с dx2- y2 - орбиталью металла. Из рис. 2,б ясно, почему любая комбинация сигма-АО лигандов дает нулевое перекрывание с rf-орбиталями металла типа t2g.
57. Согласно методу валентных связей (ВС) между комплексообразователем и лигандами возникает ковалентная связь по донорно-акцепторному механизму.
Рассмотрим образование комплексного соединения из и аммиака NH3:
Электронная формула иона цинка
: 1s22s22p63s23p63d104s04p0
Ион цинка имеет свободные атомные орбитали 4s и 4p и является акцептором. Атомные орбитали неравноценны и подвергаются гибридизации, с образованием четырех равноценных гибридных орбиталей.
У атома азота в молекуле аммиака имеется неподеленная пара электронов, и он служит донором:
:N-H.
При их взаимодействии Zn2+ и 4NH3 образуется комплексный ион [Zn(NH3)4]2+. Так как, атомные орбитали цинка подвергались sp3-гибридизации, то комплексный ион будет иметь тетраэдрическое строение.
При образовании донорно-акцепторной связи в комплексах могут использоваться: s-, p-, d- орбитали. Если гибридизации подвергаются s- и p- орбитали, то наблюдается sp-гибридизация, которая приводит к образованию линейной структуры комплекса с координационным числом комплексообразователя равным 2. -[Ag(NH3)2]+. Если у комплексообразователя участвуют в гибридизации s и 2р атомные орбитали (sp2-гибридизация), то образуется плоская треугольная структура комплекса. При sp2d – гибридизации структура образующегося комплекса – квадратная, координационное число равно 4. При sp3d2 – гибридизации структура комплекса октаэдрическая, координационное число равно 6 и т.п.
Метод ВС позволяет предсказать состав, структуру комплекса, магнитные и оптические свойства.
Если в комплексе все электроны спарены, то свойства комплекса - диамагнитные (выталкивается из магнитного поля), если имеются неспаренные электроны, то свойства комплекса парамагнитные (втягивается в магнитное поле).
Окраска комплексных соединений зависит от типа лигандов и комплексообразователя. Из-за расщепления энергии d- орбиталей в октаэдрическом поле лигандов появляется возможность перехода электронов с низкоэнергетических d – подуровней на уровни с более высокой энергией. При этом комплексы поглощают кванты света определенных диапазонов длин волн и имеют соответствующую окраску.
Таким образом, метод ВС позволяет объяснить механизм образования химических связей и свойства комплексных соединений.
58.Простые вещества — вещества, состоящие исключительно из атомов одного химического элемента (из гомоядерных молекул)[1][2], в отличие от сложных веществ. Являются формой существования химических элементов в свободном виде[1][3]; или, иначе говоря, элементы, не связанные химически ни с каким другим элементом, образуют простые вещества[3]. Известно свыше 400 разновидностей простых веществ[2].
В зависимости от типа химической связи между атомами простые вещества могут быть металлами (Na, Mg, Al, Bi и др.) и неметаллами (H2, N2, Br2, Si и др.)[2].
Примеры простых веществ: молекулярные (O2, O3, H2, Cl2) и атомарные (He, Ar) газы; различные формы углерода, иод (I2), металлы (не в виде сплавов).
Молекулярные вещества - это вещества, мельчайшими структурными частицами которых являются молекулы
Молекулы - наименьшая частица молекулярного вещества, способная существовать самостоятельно и сохраняющая его химические свойства.
Основные оксиды
1. Основный оксид + cильная кислота → соль + вода
2. Сильноосновный оксид + вода → щелочь
3. Сильноосновный оксид + кислотный оксид → соль
4. Основный оксид + водород → металл + вода
Примечание: металл менее активный, чем алюминий.
[править]Кислотные оксиды
1. Кислотный оксид + вода → кислота
Некоторые оксиды, например SiO2, с водой не вступают в реакцию, поэтому их кислоты получают косвенным путём.
2. Кислотный оксид + основный оксид → соль
3. Кислотный оксид + основание → соль + вода
Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей:
4. Нелетучий оксид + соль1 → соль2 + летучий оксид
5. Ангидрид кислоты 1 + безводная кислородосодержащая кислота 2 → Ангидрид кислоты 2 + безводная кислородосодержащая кислота 1
[править]Амфотерные оксиды
При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:
При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства:
(в водном растворе)
(при сплавлении)
Слева направо по периодуу элементов происходит ослабление металлических свойств, и усиление неметаллических свойств, основные свойства оксидов ослабевают, а кислотные свойства оксидов возрастают.
По главным подгруппамнеметаллические свойства элементов ослабевают, а металлические усиливаются, поэтому: сверху вниз по главной подгруппе возрастают основанные свойства оксидов, а кислотные ослабевают.
Обратите внимание!Если один и тот же элемент образует несколько оксидов с разными степенями окисления, то чем выше степень окисления элемента в оксиде, тем выше его кислотные свойства.
Например: и – первый оксид основной, а второй амфотерный. , – первый оксид основной, второй – амфотерный, последний – кислотный.
60. Кисло́ты — сложные вещества, в состав которых обычно входят атомы водорода, способные замещаться на атомы металлов, и кислотный остаток. Водные растворы кислот имеют кислый вкус, обладают раздражающим действием, способны менять окраску индикаторов, отличаются рядом общих химич Взаимодействие с основными оксидами с образованием соли и воды:
Взаимодействие с амфотерными оксидами с образованием соли и воды:
Взаимодействие со щелочами с образованием соли и воды (реакция нейтрализации):
Взаимодействие с нерастворимыми основаниями с образованием соли и воды, если полученная соль растворима:
Взаимодействие с солями, если выпадает осадок или выделяется газ:
Сильные кислоты вытесняют более слабые из их солей:
(в данном случае образуется неустойчивая угольная кислота , которая сразу же распадается на воду и углекислый газ)
Металлы, стоящие в ряду активности до водорода, вытесняют его из раствора кислоты (кроме азотной кислоты любой концентрации и концентрированной серной кислоты ), если образующаяся соль растворима:
С азотной кислотой и концентрированной серной кислотами реакция идёт иначе:
См. статью Взаимодействие кислот с металлами.
Для органических кислот характерна реакция этерификации (взаимодействие со спиртами с образованием сложного эфира и воды):
Например,
Основания (осно́вные гидрокси́ды) — сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (-OH). В водном растворе диссоциируют с образованием катионов и анионов ОН−. Название основания обычно состоит из двух слов: «гидроксид металла/аммония». Хорошо растворимые в воде основания называются щелочами.
В водных растворах основания диссоциируют, что изменяет ионное равновесие:
это изменение проявляется в цветах некоторых кислотно-основных индикаторов:
лакмус становится синим,
метилоранж — жёлтым,
фенолфталеин приобретает цвет фуксии.
При взаимодействии с кислотой происходит реакция нейтрализации и образуется соль и вода:
Примечание: реакция не идёт, если и кислота и основание слабые.
При избытке кислоты или основания реакция нейтрализации идёт не до конца и образуются кислые или осно́вные соли, соответственно:
Амфотерные основания могут реагировать с щелочами с образованием гидроксокомплексов:
Основания реагируют с кислотными или амфотерными оксидами с образованием солей:
Основания вступают в обменные реакции (реагируют с растворами солей):
Слабые и нерастворимые основания при нагреве разлагаются на оксид и воду:
Некоторые основания (Cu(I), Ag, Au(I)) разлагаются уже при комнатной температуре.
Основания щелочных металлов (кроме лития) при нагревании плавятся, расплавы являются электролитами
Протонная теория Брёнстеда
Согласно теории Бренстеда кислота является донором,
а основание - акцептором протонов;
кислоты и основания существуют только как
сопряженные пары;
протон не существует в растворе в свободном виде,
в воде он образует катион оксония.
Теория электролитической диссоциации Аррениуса
Согласно Аррениусу кислотами являются
электролиты, при диссоциации которых в
водных растворах образуются ионы
водорода (протоны)
Основаниями Аррениуса являются электролиты,
при диссоциации которых в водных растворах
образуются гидроксид-ионы