Теория электролитической диссоциации Аррениуса

Протонная теория Брёнстеда

Согласно теории Бренстеда кислота является донором,

а основание - акцептором протонов;

кислоты и основания существуют только как

сопряженные пары;

протон не существует в растворе в свободном виде,

в воде он образует катион оксония.

Теория электролитической диссоциации Аррениуса

Согласно Аррениусу кислотами являются

электролиты, при диссоциации которых в

водных растворах образуются ионы

водорода (протоны)

Основаниями Аррениуса являются электролиты,

при диссоциации которых в водных растворах

образуются гидроксид-ионы

Электронная теория кислот и оснований,

Или Теория Льиса

Электронная теория кислот и оснований является

наиболее общей теорией кислот и оснований

По Льису- кислоты - это вещества, способные принимать

электронную пару (акцетор электронной пары),

а основания - вещества, способные давать

электронную пару (доноры электронной пары)

Таким образом, теория кислот и оснований Бренстеда есть

Метод электронного балланса

В этом методе сравнивают степени окисления атомов в исходных и конечных веществах, руководствуясь правилом: число электронов, отданных восстановителем, должно рав­няться числу электронов, присоединенных окислителем. Для составле­ния уравнения надо знать формулы реагирующих веществ и продуктов реакции. Последние определяются либо опытным путем, либо на осно­ве известных свойств элементов. Рассмотрим применение этого метода на примерах.

Электронный баланс- метод нахождения коэффициентов в уравнениях окислительно-восстановительных реакций, в котором рассматривается обмен электронами между атомами элементов, изменяющих свою степень окисления. Число электронов, отданное восстановителем равно числу электронов, получаемых окислителем.

Уравнение составляется в несколько стадий:

1. Записывают схему реакции.

KMnO4 + HCl ® KCl + MnCl2 + Cl2­ + H2O

2. Проставляют степениокисления над знаками элементов, которые меняются.

KMn+7O4 + HCl-1 ® KCl + Mn+2Cl2 + Cl20­ + H2O

3. Выделяют элементы, изменяющие степени окисления и определяют число электронов, приобретенных окислителем и отдаваемых восстановителем.

Mn+7 + 5ē ® Mn+2

2Cl-1 - 2ē ® Cl20

4. Уравнивают число приобретенных и отдаваемых электронов, устанавливая тем самым коэффициенты для соединений, в которых присутствуют элементы, изменяющие степень окисления.

Mn+7 + 5ē ® Mn+2
2Cl-1 - 2ē ® Cl20

––––––––––––––––––––––––

2Mn+7 + 10Cl-1 ® 2Mn+2 + 5Cl20

5. Подбирают коэффициенты для всех остальных участников реакции.

2KMn+7O4 + 16HCl-1 ® 2KCl + 2Mn+2Cl2 + 5Cl20 + 8H2O

B Электронно-ионный баланс (метод полуреакций) метод нахождения коэффициентов, в которомрассматривается обмен электронами между ионами в растворе с учетом характера среды

_______________________________

50. Электродный потенциал, разность электростатических потенциалов между электродом и находящимся с ним в контакте электролитом. Возникновение электродный потенциал обусловлено пространственным разделением зарядов противоположного знака на границе раздела фаз и образованием двойного электрического слоя.

Стандартный водоро́дный электро́д — электрод, использующийся в качестве электрода сравнения при различных электрохимических измерениях и в гальванических элементах.

Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

Теория электролитической диссоциации Аррениуса - student2.ru ,


51.Окислительно-восстановительный потенциал (редокс-потенциал от англ. redox — reduction-oxidation reaction, Eh или Eh) — мера способности химического вещества присоединять электроны (восстанавливаться[1]). Окислительно-восстановительный потенциал выражают вмилливольтах (мВ). Примером окислительно-восстановительного электрода: Pt/Fe3+,Fe2+ Окислительно-восстановительный потенциал определяют как электрический потенциал, устанавливающийся при погружении платины или золота (инертный электрод) в окислительно-восстановительную среду, то есть в раствор, содержащий как восстановленное соединение (Ared), так и окисленное соединение (Aox). Если полуреакцию восстановления представить уравнением:

Aox + n·e → Ared,

то количественная зависимость окислительно-восстановительного потенциала от концентрации (точнее активностей) реагирующих веществ выражается уравнением Нернста.

Окислительно-восстановительный потенциал определяют электрохимическими методами с использованием стеклянного электрода с red-ox функцией[2] и выражают в милливольтах (мВ) относительно стандартного водородного электрода в стандартных условиях.

Положительный окислительно-восстановительный потенциал электрода Cu2+│Cu (E° = +0,34 B) показывает, что в стандартных условиях водород окисляется ионами меди, медный электрод по отношению к водороду является катодом, электроны по внешней цепи переходят от водорода к меди:

  Теория электролитической диссоциации Аррениуса - student2.ru  

Отрицательный потенциал Zn2+│Zn (E° = –0,76 B) означает, что в стандартных условиях цинковый электрод может быть только анодом, его окислительные функции по отношению к водородному электроду 2H+│H2 отрицательные. Цинк здесь восстанавливает катионы водорода, электроны во внешней цепи перетекают от цинка к водороду:

  Теория электролитической диссоциации Аррениуса - student2.ru  

Суммируя эти реакции, получим

 
Теория электролитической диссоциации Аррениуса - student2.ru
 

то есть электрод с более положительным значением стандартного электродного потенциала является окислителем по отношению к электроду с менее положительным значением E°.

52.Для расстановки коэффициентов в уравнениях окислительно-восстановительных реакций используют два основных метода – электронный баланс и ионно-электронный метод (метод полуреакций).

Электронный баланс основан на схематической записи изменения степеней окисления окислителя и восстановителя по отдельности и уравнивания числа переданных электронов. Например, для реакции описываемой схемой

NH3 + O2 Теория электролитической диссоциации Аррениуса - student2.ru N2 + H 2O

сначала определяем элементы, меняющие свои степени окисления. В левой у азота степень окисления -3, в правой – 0. Азот повышает свою степень окисления и является восстановителем.

N-3 Теория электролитической диссоциации Аррениуса - student2.ru N0

В ходе реакции элемент азот окисляется и, следовательно, отдает электроны. Для того, чтобы выполнялся закон сохранения заряда, один азот должен отдать три электрона:

N-3 - 3е Теория электролитической диссоциации Аррениуса - student2.ru N0

С учетом того, что в правой части схемы записана молекула азота, удваиваем все коэффициенты:

2N-3 - 6е Теория электролитической диссоциации Аррениуса - student2.ru N20

В левой части кислород имеет степень окисления 0, в правой -2, т. е. понижает свою степень окисления и в данной реакции является окислителелем:

О0 Теория электролитической диссоциации Аррениуса - student2.ru О-2

Для этого атому кислорода необходимы два электрона:

О0 + 2е Теория электролитической диссоциации Аррениуса - student2.ru О-2

Теория электролитической диссоциации Аррениуса - student2.ru

С учeтом того, что в реакции участвует молекулярный кислород, окончательно для кислорода получим:

О20 + 4е Теория электролитической диссоциации Аррениуса - student2.ru 2O-2

Запишем процессы окисления и восстановления в одну схему:

Теория электролитической диссоциации Аррениуса - student2.ru

Число электронов, отданных восстановителем, должно быть равно числу электронов, принятых окислителем, поэтому домножаем обе полуреакции на коэффициенты, которые доводят число электронов в каждом процессе до наименьшего общего кратного. Этот коэффициент для первой полуреакции равен 2, для второй - 3, при этом число электронов в обоих полуреакциях будет по 12:

Теория электролитической диссоциации Аррениуса - student2.ru

Из полученной схемы следует, что в левой части должно быть 4 атома азота в степени окисления -3, следовательно у аммиака коэффициент равен 4, в правой части будет две молекулы азота. В левой части коэффициент у молекулярного кислорода равен 3, в правой части должно быть 6 атомов кислорода в степени окисления -2. Получаем уравнение:

4NH3 + 3O2 = 2N2 + 6H2O

Проверяем число атомов водорода в обеих частях - в левой 12 и в правой 12.

Метод электронного баланса применяется для составления уравнений окислительно восстановительных реакций, протекающих в газовой или твердой фазе, если реакция протекает в растворе или расплаве с участием электролитов, то используется метод электронно-ионного баланса (метод полуреакций).

Активность твердого вещества (aтв) принимается равной единице, поэтому в случае рассматриваемого нами металлического электрода (aM) уравнение Нернста упрощается:

 
Теория электролитической диссоциации Аррениуса - student2.ru
 

Потенциал электрода, как видно из этого уравнения, зависит от активности ионов Теория электролитической диссоциации Аррениуса - student2.ru которые являются потенциалопределяющими. Разность потенциалов стандартного водородного электрода и какого-нибудь другого электрода, измеренная при стандартных условиях, называется стандартным электродным потенциалом и обозначается E°.

Следует подчеркнуть, что:

Уравнение Нернста отдельного электрода условились писать для процесса восстановления независимо от того, в какую сторону сдвинуто равновесие, то есть под знаком логарифма в уравнении Нернста в числителе стоит окисленная форма реагента, в знаменателе – восстановленная.

В дробном индексе при E и E° над чертой ставится окисленная форма полуэлемента, под чертой – восстановленная.

Активности твердых веществ в уравнение Нернста не входят.

52.Комплексные соединения (лат. complexus — сочетание, обхват) или координационные соединения (лат. co — «вместе» и ordinatio — «упорядочение») — частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами. Теория комплексных соединений (координационная теория) была предложена в 1893 г. А. Вернером.

В молекуле любого комплексного соединения один из ионов, обычно положительно заряженный, занимает центральное место и называетсякомплексообразователем (центральным ионом). Вокруг него в непосредственной близости расположено (координировано) некоторое число противоположно заряженных ионов или нейтральных молекул, называемых лигандами и образующих внутреннюю координационную сферу. Остальные ионы находятся на более далеком расстоянии от центрального иона и составляют внешнюю координационную сферу.

Количество лигандов, окружающих центральный ион, называется координационным числом.

Внутренняя сфера комплекса в значительной степени сохраняет стабильность в растворе (ее границы в формуле показывают квадратными скобками). Ионы внешней сферы в растворе легко отщепляются.

Важнейшей характеристикой комплексообразователя является количество химических связей, которые он образует с лигандами, или координационное число (КЧ). Эта характеристика комплексообразователя определяется главным образом строением его электронной оболочки и обусловливается валентными возможностями центрального атома или условного иона-комплексообразователя (подробнее см. >>>).

Когда комплексообразователь координирует монодентатные лиганды, то координационное число равно числу присоединяемых лигандов. А число присоединяемых к комплексообразователю полидентатных лигандов всегда меньше значения координационного числа.

Между значениями координационного числа и степенью окисления элемента-комплексообразователя существует определенная зависимость. Так, для элементов-комплексообразователей, имеющих степень окисления +I (AgI, CuI, AuI, II и др.) наиболее характерно координационное число 2 – например, в комплексах типа [Ag(NH3)2]+, [Cu(CN)2]-, [IBr2]-.

Элементы-комплексообразователи со степенью окисления +II (ZnII, PtII, PdII, CuII и др.) часто образуют комплексы, в которых проявляют координационное число 4, такие как [Zn(NH3)4]2+, [PtCl4]2-, [Pd(NH3)2Cl2]0,[ZnI4]2-, [Cu(NH3)4]2+.

В аквакомплексах координационное число комплексообразователя в степени окисления +II чаще всего равно 6: [Fe(H2O)6]2+, [Mg(H2O)6]2+, [Ni(H2O)6]2+.

Элементы-комплексообразователи, обладающие степенью окисления +III и +IV (PtIV, AlIII, CoIII, CrIII, FeIII), имеют в комплексах, как правило, КЧ 6.
Например, [Co(NH3)6]3+, [Cr(OH)6]3-, [PtCl6]2- , [AlF6]3-, [Fe(CN)6]3-.

Известны комплексообразователи, которые обладают практически постоянным координационным числом в комплексах разных типов. Таковы кобальт(III), хром(III) или платина(IV) с КЧ 6 и бор(III), платина(II), палладий(II), золото(III) с КЧ 4. Тем не менее большинство комплексообразователей имеет переменное координационное число. Например, для алюминия(III) возможны КЧ 4 и КЧ 6 в комплексах [Al(OH)4]- и[Al(H2O)2(OH)4]-.

Координационные числа 3, 5, 7, 8 и 9 встречаются сравнительно редко. Есть всего несколько соединений, в которых КЧ равно 12 – например, таких как K9[Bi(NCS)12].

Заряд комлексного иона равен алгебраической сумме зарядов комплексообразователя и лигандов.

53. По заряду комплекса

1) Катионные комплексы образованы в результате координации вокруг положительного иона нейтральных молекул (H2O, NH3 и др.).

[(Zn(NH3)4)]Cl2 — хлорид тетраамминцинка(II)
[Co(NH3)6]Cl2 — хлорид гексаамминкобальта(II)

2) Анионные комплексы: в роли комплексообразователя выступает атом с положительной степенью окисления, а лигандами являются простые или сложные анионы.

K2[BeF4] — тетрафторобериллат(II) калия
Li[AlH4] — тетрагидридоалюминат(III) лития
K3[Fe(CN)6] — гексацианоферрат(III) калия

3) Нейтральные комплексы образуются при координации молекул вокруг нейтрального атома, а также при одновременной координации вокруг положительного иона — комплексообразователя отрицательных ионов и молекул.

[Ni(CO)4] — тетракарбонилникель
[Pt(NH3)2Cl2] — дихлородиамминплатина(II)

По природе лиганда

1) Аммиакаты — комплексы, в которых лигандами служат молекулы аммиака, например: [Cu(NH3)4]SO4, [Co(NH3)6]Cl3, [Pt(NH3)6]Cl4 и др.

2) Аквакомплексы — в которых лигандом выступает вода: [Co(H2O)6]Cl2, [Al(H2O)6]Cl3 и др.

3) Карбонилы — комплексные соединения, в которых лигандами являются молекулы оксида углерода(II): [Fe(CO)5], [Ni(CO)4].

4) Ацидокомплексы — комплексы, в которых лигандами являются кислотные остатки. К ним относятся комплексные соли: K2[PtCl4], комплексные кислоты: H2[CoCl4], H2[SiF6].

5) Гидроксокомплексы — комплексные соединения, в которых в качестве лигандов выступают гидроксид-ионы: Na2[Zn(OH)4], Na2[Sn(OH)6] и др.

54. Природа химической связи в КС принципиально не отличается от ее природы в простых соединениях.

Во внутренней сфере между комплексообразователем и лигандами формируются полярные ковалентные связи. Частицы внешней сферы удерживаются около комплекса за счет электростатического ионного взаимодействия, т.е. характер связи преимущественно ионный.

Для объяснения химической связи в КС используют три основных концепции: методы валентных связей (ВС) и молекулярных орбиталей (МО), теорию кристаллического поля (ТКП).

Рассмотрим более простой, но достаточно универсальный метод ВС. Химическую связь в комплексе, т.е. между комплексообразователем и лигандами обычно объясняют с позиций донорно-акцепторного механизма. При этом, как правило, лиганды предоставляют неподеленные электронные пары, а комплексообразователи - свободные орбитали.

Для оценки возможности протекания реакции замещения лигандов можно использовать спектрохимический ряд, руководствуясь тем, что более сильные лиганды вытесняют из внутренней сферы менее сильные.

55. В растворах комплексных соединений могут происходить разнообразные сложные превращения, определяемые природой как самого комплексного соединения, так и растворителя.
Это, во-первых, диссоциация на комплексные и внешнесферные ионы, затем – диссоциация комплексного иона или нейтрального комплекса, сопровождаемая замещением лиганда во внутренней сфере на молекулы растворителя.
Кроме того, комплексы могут участвовать в разнообразных окислительно-восстановительных процессах, если в состав комплексного иона или растворителя входят ионы или молекулы с ярко выраженными окислительными или восстановительными свойствами.

Константы нестойкости

Если вместо равновесия в реакциях образования комплексов рассматривать обратный процесс – реакции диссоциации комплексов (или реакции обмена лигандов на молекулы растворителя), то соответствующие константы будут носить название ступенчатых констант нестойкости комплексов:

[ML] Теория электролитической диссоциации Аррениуса - student2.ru M + L; K1(нест) = [M] ´ [L] / [ML]

[ML2] Теория электролитической диссоциации Аррениуса - student2.ru [ML] + L ; K2(нест) = [ML] ´ [L] / [ML2]

…….

[MLn] Теория электролитической диссоциации Аррениуса - student2.ru [ML(n-1)] + L; Kn(нест) = [ML(n-1)] ´ [L] / [MLn];

и общих (суммарных) констант нестойкости комплексов:

[ML] Теория электролитической диссоциации Аррениуса - student2.ru M + L; b1(нест) = [M] ´ [L] / [ML]

[ML2] Теория электролитической диссоциации Аррениуса - student2.ru M + 2 L; b2(нест) = [M] ´ [L]2 / [ML2]

[ML3] Теория электролитической диссоциации Аррениуса - student2.ru M + 3 L; b3(нест) = [M] ´ [L]3 / [ML3]

…….

[MLn] Теория электролитической диссоциации Аррениуса - student2.ru M + n L; bn(нест) = [M] ´ [L]n / [MLn]

Ступенчатые и общие константы образования и нестойкости комплексов соотносятся друг с другом как обратные величины:

bn(обр) = 1 / b n(нест); Kn(обр) = 1 / Kn(нест),

поэтому для сравнения прочности комплексов могут использоваться справочные данные как по значениям констант образования, так и констант нестойкости.

56.
Рассмотрим вначале наиболее простой, но весьма распростра­ненный случай комплексов, образуемых лигандами L типа (СН3)3Р, NH3, H2O, ОН-, Н-, которые используют для связывания с цент­ральным атомом металла неподеленную гибридную пару электро­нов или пару электронов на s-орбитали (гибрид-ион). Начнем рас­смотрение с наиболее характерного типа координации — октаэдрического. Координационные связи в комплексе МL6k+, где М — пе­реходный металл, образуются при донировании электронов с сигма-орбиталей лигандов на вакантные 3d-, 4s-, 4p- орбитали металла (возьмем атом металла третьего периода). Чтобы рассчитать ва­лентные МО комплекса, выберем координатные оси, как показано на рис. 1, расположив вдоль них лиганды.

Полный базис валентных АО состоит из 15 орбиталей: девяти — металла, шести — лигандов. Только такие комбинации лигандных АО будут обобщаться в форме МО с различными орбиталями металла, которые преобразуются по одинаковым представлениям симметрии в точечной группе ОА. Нетрудно подо­брать соответствующие комбинации сигма-АО лигандов (называемые групповыми орбиталями). Рис. 2,а иллюстрирует выбор групповой орбитали еg-симметрии, комбинирующейся с dx2- y2 - орбиталью металла. Из рис. 2,б ясно, почему любая комбинация сигма-АО лигандов дает нуле­вое перекрывание с rf-орбиталями металла типа t2g.

57. Согласно методу валентных связей (ВС) между комплексообразователем и лигандами возникает ковалентная связь по донорно-акцепторному механизму.

Рассмотрим образование комплексного соединения из Теория электролитической диссоциации Аррениуса - student2.ru и аммиака NH3:

Теория электролитической диссоциации Аррениуса - student2.ru

Теория электролитической диссоциации Аррениуса - student2.ru Теория электролитической диссоциации Аррениуса - student2.ru

Электронная формула иона цинка

Теория электролитической диссоциации Аррениуса - student2.ru : 1s22s22p63s23p63d104s04p0

Ион цинка имеет свободные атомные орбитали 4s и 4p и является акцептором. Атомные орбитали неравноценны и подвергаются гибридизации, с образованием четырех равноценных гибридных орбиталей.

У атома азота в молекуле аммиака имеется неподеленная пара электронов, и он служит донором:

:N-H.

При их взаимодействии Zn2+ и 4NH3 образуется комплексный ион [Zn(NH3)4]2+. Так как, атомные орбитали цинка подвергались sp3-гибридизации, то комплексный ион будет иметь тетраэдрическое строение.

При образовании донорно-акцепторной связи в комплексах могут использоваться: s-, p-, d- орбитали. Если гибридизации подвергаются s- и p- орбитали, то наблюдается sp-гибридизация, которая приводит к образованию линейной структуры комплекса с координационным числом комплексообразователя равным 2. -[Ag(NH3)2]+. Если у комплексообразователя участвуют в гибридизации s и 2р атомные орбитали (sp2-гибридизация), то образуется плоская треугольная структура комплекса. При sp2d – гибридизации структура образующегося комплекса – квадратная, координационное число равно 4. При sp3d2 – гибридизации структура комплекса октаэдрическая, координационное число равно 6 и т.п.

Метод ВС позволяет предсказать состав, структуру комплекса, магнитные и оптические свойства.

Если в комплексе все электроны спарены, то свойства комплекса - диамагнитные (выталкивается из магнитного поля), если имеются неспаренные электроны, то свойства комплекса парамагнитные (втягивается в магнитное поле).

Окраска комплексных соединений зависит от типа лигандов и комплексообразователя. Из-за расщепления энергии d- орбиталей в октаэдрическом поле лигандов появляется возможность перехода электронов с низкоэнергетических d – подуровней на уровни с более высокой энергией. При этом комплексы поглощают кванты света определенных диапазонов длин волн и имеют соответствующую окраску.

Таким образом, метод ВС позволяет объяснить механизм образования химических связей и свойства комплексных соединений.

58.Простые вещества — вещества, состоящие исключительно из атомов одного химического элемента (из гомоядерных молекул)[1][2], в отличие от сложных веществ. Являются формой существования химических элементов в свободном виде[1][3]; или, иначе говоря, элементы, не связанные химически ни с каким другим элементом, образуют простые вещества[3]. Известно свыше 400 разновидностей простых веществ[2].

В зависимости от типа химической связи между атомами простые вещества могут быть металлами (Na, Mg, Al, Bi и др.) и неметаллами (H2, N2, Br2, Si и др.)[2].

Примеры простых веществ: молекулярные (O2, O3, H2, Cl2) и атомарные (He, Ar) газы; различные формы углерода, иод (I2), металлы (не в виде сплавов).

Молекулярные вещества - это вещества, мельчайшими структурными частицами которых являются молекулы

Молекулы - наименьшая частица молекулярного вещества, способная существовать самостоятельно и сохраняющая его химические свойства.

Основные оксиды

1. Основный оксид + cильная кислота → соль + вода

Теория электролитической диссоциации Аррениуса - student2.ru

2. Сильноосновный оксид + вода → щелочь

Теория электролитической диссоциации Аррениуса - student2.ru

3. Сильноосновный оксид + кислотный оксид → соль

Теория электролитической диссоциации Аррениуса - student2.ru

Теория электролитической диссоциации Аррениуса - student2.ru

4. Основный оксид + водород → металл + вода

Теория электролитической диссоциации Аррениуса - student2.ru

Примечание: металл менее активный, чем алюминий.

[править]Кислотные оксиды

1. Кислотный оксид + вода → кислота

Теория электролитической диссоциации Аррениуса - student2.ru

Некоторые оксиды, например SiO2, с водой не вступают в реакцию, поэтому их кислоты получают косвенным путём.

2. Кислотный оксид + основный оксид → соль

Теория электролитической диссоциации Аррениуса - student2.ru

3. Кислотный оксид + основание → соль + вода

Теория электролитической диссоциации Аррениуса - student2.ru

Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей:

Теория электролитической диссоциации Аррениуса - student2.ru

Теория электролитической диссоциации Аррениуса - student2.ru

4. Нелетучий оксид + соль1 → соль2 + летучий оксид

Теория электролитической диссоциации Аррениуса - student2.ru

5. Ангидрид кислоты 1 + безводная кислородосодержащая кислота 2 → Ангидрид кислоты 2 + безводная кислородосодержащая кислота 1

Теория электролитической диссоциации Аррениуса - student2.ru

[править]Амфотерные оксиды

При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:

Теория электролитической диссоциации Аррениуса - student2.ru

При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства:

Теория электролитической диссоциации Аррениуса - student2.ru (в водном растворе)

Теория электролитической диссоциации Аррениуса - student2.ru (при сплавлении)

Слева направо по периодуу элементов происходит ослабление металлических свойств, и усиление неметаллических свойств, основные свойства оксидов ослабевают, а кислотные свойства оксидов возрастают.

По главным подгруппамнеметаллические свойства элементов ослабевают, а металлические усиливаются, поэтому: сверху вниз по главной подгруппе возрастают основанные свойства оксидов, а кислотные ослабевают.

Обратите внимание!Если один и тот же элемент образует несколько оксидов с разными степенями окисления, то чем выше степень окисления элемента в оксиде, тем выше его кислотные свойства.

Например: Теория электролитической диссоциации Аррениуса - student2.ru и Теория электролитической диссоциации Аррениуса - student2.ru – первый оксид основной, а второй амфотерный. Теория электролитической диссоциации Аррениуса - student2.ru Теория электролитической диссоциации Аррениуса - student2.ru , Теория электролитической диссоциации Аррениуса - student2.ru – первый оксид основной, второй – амфотерный, последний – кислотный.

60. Кисло́ты — сложные вещества, в состав которых обычно входят атомы водорода, способные замещаться на атомы металлов, и кислотный остаток. Водные растворы кислот имеют кислый вкус, обладают раздражающим действием, способны менять окраску индикаторов, отличаются рядом общих химич Взаимодействие с основными оксидами с образованием соли и воды:

Теория электролитической диссоциации Аррениуса - student2.ru

Взаимодействие с амфотерными оксидами с образованием соли и воды:

Теория электролитической диссоциации Аррениуса - student2.ru

Взаимодействие со щелочами с образованием соли и воды (реакция нейтрализации):

Теория электролитической диссоциации Аррениуса - student2.ru

Взаимодействие с нерастворимыми основаниями с образованием соли и воды, если полученная соль растворима:

Теория электролитической диссоциации Аррениуса - student2.ru

Взаимодействие с солями, если выпадает осадок или выделяется газ:

Теория электролитической диссоциации Аррениуса - student2.ru

Сильные кислоты вытесняют более слабые из их солей:

Теория электролитической диссоциации Аррениуса - student2.ru

Теория электролитической диссоциации Аррениуса - student2.ru

(в данном случае образуется неустойчивая угольная кислота Теория электролитической диссоциации Аррениуса - student2.ru , которая сразу же распадается на воду и углекислый газ)

Металлы, стоящие в ряду активности до водорода, вытесняют его из раствора кислоты (кроме азотной кислоты Теория электролитической диссоциации Аррениуса - student2.ru любой концентрации и концентрированной серной кислоты Теория электролитической диссоциации Аррениуса - student2.ru ), если образующаяся соль растворима:

Теория электролитической диссоциации Аррениуса - student2.ru

С азотной кислотой и концентрированной серной кислотами реакция идёт иначе:

Теория электролитической диссоциации Аррениуса - student2.ru

См. статью Взаимодействие кислот с металлами.

Для органических кислот характерна реакция этерификации (взаимодействие со спиртами с образованием сложного эфира и воды):

Теория электролитической диссоциации Аррениуса - student2.ru

Например,

Теория электролитической диссоциации Аррениуса - student2.ru

Основания (осно́вные гидрокси́ды) — сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (-OH). В водном растворе диссоциируют с образованием катионов и анионов ОН. Название основания обычно состоит из двух слов: «гидроксид металла/аммония». Хорошо растворимые в воде основания называются щелочами.

В водных растворах основания диссоциируют, что изменяет ионное равновесие:

Теория электролитической диссоциации Аррениуса - student2.ru

это изменение проявляется в цветах некоторых кислотно-основных индикаторов:

лакмус становится синим,

метилоранж — жёлтым,

фенолфталеин приобретает цвет фуксии.

При взаимодействии с кислотой происходит реакция нейтрализации и образуется соль и вода:

Теория электролитической диссоциации Аррениуса - student2.ru

Примечание: реакция не идёт, если и кислота и основание слабые.

При избытке кислоты или основания реакция нейтрализации идёт не до конца и образуются кислые или осно́вные соли, соответственно:

Теория электролитической диссоциации Аррениуса - student2.ru

Теория электролитической диссоциации Аррениуса - student2.ru

Амфотерные основания могут реагировать с щелочами с образованием гидроксокомплексов:

Теория электролитической диссоциации Аррениуса - student2.ru

Основания реагируют с кислотными или амфотерными оксидами с образованием солей:

Теория электролитической диссоциации Аррениуса - student2.ru

Теория электролитической диссоциации Аррениуса - student2.ru

Основания вступают в обменные реакции (реагируют с растворами солей):

Теория электролитической диссоциации Аррениуса - student2.ru

Слабые и нерастворимые основания при нагреве разлагаются на оксид и воду:

Теория электролитической диссоциации Аррениуса - student2.ru

Некоторые основания (Cu(I), Ag, Au(I)) разлагаются уже при комнатной температуре.

Основания щелочных металлов (кроме лития) при нагревании плавятся, расплавы являются электролитами

Протонная теория Брёнстеда

Согласно теории Бренстеда кислота является донором,

а основание - акцептором протонов;

кислоты и основания существуют только как

сопряженные пары;

протон не существует в растворе в свободном виде,

в воде он образует катион оксония.

Теория электролитической диссоциации Аррениуса

Согласно Аррениусу кислотами являются

электролиты, при диссоциации которых в

водных растворах образуются ионы

водорода (протоны)

Основаниями Аррениуса являются электролиты,

при диссоциации которых в водных растворах

образуются гидроксид-ионы

Наши рекомендации