Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии:

МНОЖЕСТВЕННАЯ РЕГРЕССИЯ

Расчетные формулы

1.2.1.1. Оценки вектора коэффициентов регрессии:

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

1.2.1.2. Стандартная ошибка Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru k-го коэффициента регрессии, равная корню квадратному из соответствующего диагонального элемента ковариационной матрицы векторной оценки

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru ,

где Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru рассчитывается по остаткам Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru

1.2.1.3. Множественный индекс корреляции:

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

1.2.1.4. Бета-коэффициенты:

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

1.2.1.5. Парные коэффициенты корреляции:

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

1.2.1.6. Множественный коэффициент корреляции:

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

1.2.1.7. Скорректированный коэффициент множественной детерминации:

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

1.2.1.8. Частный F-критерий:

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

1.2.1.9. Стандартную ошибку прогноза среднего

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

1.2.10. Для проверки гипотезы о равенстве прогноза среднего значения заданной величине рассчитывается t-статистика:

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

Решение типовой задачи

Задание 1.2.2.1. Предприниматель желает сдать в аренду на один год принадлежащий ему отель*** «Блаженство жизни» (80 комнат), расположенный в престижной курортной зоне, обладающий собственным пляжем, общая площадь территории отеля составляет 3,42 кв.м.

Для того чтобы определить величину платы, которую он сможет установить за аренду своего отеля, предприниматель решил проанализировать ситуацию на соответствующей рыночной нише. Изучение объявлений, размещенных в газетах владельцами трехзвездных отелей, позволило ему сформировать небольшую базу данных, представленную в виде табл. 1.2.2.1.

На основе данных этой базы предприниматель решил построить модель множественной регрессии, отражающую зависимость величины годовой арендной платы от числа комнат, престижности района расположения отеля (1 – престижный район, 0 – нет), наличия у отеля собственного пляжа (1 – есть собственный пляж, 0 – нет), а также общей площади территории, принадлежащей отелю, и с помощью построенной модели определить примерный размер платы, которую он может получать за предоставление в аренду своего отеля.

На данный момент выбор предпринимателя колеблется между 162 тыс. руб. и 165 тыс. руб. Определите наиболее приемлемый размер арендной платы.

Т а б л и ц а 1.2.2.1

Величина годовой платы за аренду отеля, тыс. руб. Число комнат в отеле Престижность района, в котором расположен отель Наличие у отеля собственного пляжа Общая площадь территории, принадлежащей отелю, кв. км.  
 
 
1,00  
0,80  
1,20  
1,50  
1,40  
2,00  
2,50  
2,20  
2,70  
2,80  
3,00  
3,60  
3,50  
3,80  
3,60  
3,75  
4,10  
4,70  
4,25  
4,65  

Решение с помощью табличного процессора Excel

1. Ввод исходных данных с включением дополнительной переменной Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru , принимающей единственное значение, равное 1.

2. Расчет коэффициентов регрессии с использованием матричных функций Excel: ТРАНСП, МУМНОЖ, МОБР.

2.1. Нахождение обратной матрицы к матрице системы нормальных уравнений

0,4184 0,0040 -0,0764 -0,1095 -0,1802
0,0040 0,0006 0,0007 -0,0059 -0,0136
-0,0764 0,0007 0,2060 -0,0330 -0,0136
-0,1095 -0,0059 -0,0330 0,2771 0,1144
-0,1802 -0,0136 -0,0136 0,1144 0,3368

2.2. Получение вектора оценок коэффициентов регрессии

102,5677
0,1033
-0,0194
2,6003
13,9271

Таким образом, построенная модель имеет следующий вид:

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

3. Расчет стандартных ошибок коэффициентов регрессии

3.1. Проведение промежуточных расчетов, требуемых для расчета остаточной дисперсии, и оформление их в виде табл. 1.2.2.2.

Т а б л и ц а 1.2.2.2

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru
121,6579 1,8012
116,2916 1,6681
124,9597 1,0821
129,1573 0,7101
125,1448 0,0210
135,0698 1,1445
142,0139 0,0002
140,4556 0,2075
144,8188 3,3080
150,3611 0,1304
153,1466 0,0215
158,8831 0,7798
161,6400 2,6895
163,2372 0,0563
163,0327 0,9357
162,5408 29,8025
172,5978 0,3574
180,9347 0,8736
176,7332 0,0712
182,3235 0,1046
Сумма квадратов отклонений 45,77
Остаточная дисперсия 3,05

3.2. Получение стандартных ошибок

1,1299
0,0433
0,7927
0,9195
1,0137

4. Вычисление множественного коэффициента корреляции.

4.1. Проведение промежуточных расчетов и оформление их в виде табл. 1.2.2.3.

Т а б л и ц а 1.2.2.3

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru
-1- -2- -3- -4- -5-
742,56 0,30 0,16 3,43
1242,56 0,20 0,36 4,21
588,06 0,30 0,16 2,73
410,06 0,20 0,16 1,83
637,56 0,30 0,36 2,11
264,06 0,20 0,36 0,73

О к о н ч а н и е т а б л. 1.2.2.3

-1- -2- -3- -4- -5-
68,06 0,30 0,36 0,12
105,06 0,20 0,16 0,43
52,56 0,20 0,36 0,02
0,06 0,20 0,16 0,00
7,56 0,20 0,16 0,02
60,06 0,30 0,36 0,56
95,06 0,30 0,16 0,42
162,56 0,20 0,36 0,90
189,06 0,30 0,16 0,56
315,06 0,20 0,36 0,81
473,06 0,20 0,16 1,56
885,06 0,30 0,16 3,41
715,56 0,30 0,16 1,95
1008,06 0,20 0,16 3,23
Сумма квадратов отклонений
8021,75 4,95 4,80 29,03
Дисперсия
534,78 1151,33 0,33 0,32 1,94
Среднее квадратическое отклонение
23,13 33,93 0,574 0,566 1,39

4.2. Расчет множественного коэффициента корреляции

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

Множественный коэффициент корреляции достаточно высокий, что свидетельствует о существенной зависимости величины арендной платы от включенных в модель факторов.

5. Расчет скорректированного множественного индекса корреляции

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

6. Расчет бета-коэффициентов

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru ,

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru ,

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru ,

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

Полученные значения бета-коэффициенты позволяют проранжировать факторы по степени их влияния на моделируемый показатель следующим образом:

1) общая площадь территории, принадлежащей отелю (в большей степени влияющий фактор);

2) число комнат в отеле;

3) наличие собственного пляжа;

4) престижность района, в котором расположен отель (в меньшей степени влияющий фактор).

7. Вычисление парных коэффициентов корреляции.

7.1. Проведение промежуточных расчетов и оформление результатов расчетов в виде табл. 1.2.2.4.

Т а б л и ц а 1.2.2.4

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru
1008,2500 -14,9875 -10,9000 50,4806
1304,2500 15,8625 21,1500 72,3506
776,0000 -13,3375 -9,7000 40,0731
648,0000 9,1125 -8,1000 27,3881
808,0000 -13,8875 15,1500 36,6756
276,2500 7,3125 9,7500 13,8531
140,2500 -4,5375 4,9500 2,9081
174,2500 4,6125 -4,1000 6,6881
123,2500 3,2625 4,3500 1,1056
0,5000 0,1125 -0,1000 0,0131
-5,5000 -1,2375 1,1000 0,4056
-15,5000 4,2625 -4,6500 5,7931
126,7500 5,3625 3,9000 6,3131
165,7500 -5,7375 -7,6500 12,0806
178,7500 7,5625 5,5000 10,2781
230,7500 -7,9875 -10,6500 15,9306
826,5000 -9,7875 8,7000 27,1331
1130,5000 16,3625 11,9000 54,9631
1551,5000 14,7125 10,7000 37,3831
1841,5000 -14,2875 12,7000 57,0706
Сумма произведений
11290,00 2,75 54,00 478,89

7.2. Расчет парных коэффициентов корреляции

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru , Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru ,

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru , Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

8. Расчет дисперсионного отношения Фишера

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

Сравнение расчетного значения F-критерия с табличным Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru для 95%-го уровня значимости (см. Приложение) позволяет сделать вывод об адекватности построенной модели.

9. Расчет t-статистик

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru , Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru , Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru ,

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru , Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

Сравнение полученных t-статистик с табличным значением Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru (см. Приложение) подтверждает значимость таких коэффициентов регрессии, как Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru , Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru , Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru , Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru , и незначимость коэффициента Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru . Скорее всего, это связано с тем, что престижность района, в котором расположен отель, в некоторой степени определяется наличием пляжа.

10. Построение с помощью пакета анализа линейного регрессионного уравнения, исключив Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru (см. Вывод итогов 1.2.2.2).

ВЫВОД ИТОГОВ 1.2.2.2          
             
Регрессионная статистика          
Множественный R 0,997143234          
R-квадрат 0,994294628          
Нормированный R-квадрат 0,993224871          
Стандартная ошибка 1,69128398          
Наблюдения          
             
Дисперсионный анализ          
df SS MS F Значимость F
Регрессия 7975,983 2658,661 929,4583 3,739E-18  
Остаток 45,76706 2,860442      
Итого 8021,75        
             
Коэффиц-иенты Стандартная ошибка t-статис-тика P-Значение Нижние 95% Верхние 95%
Y-пересечение 102,5605062 1,056324 97,09187 1,34E-23 100,3212 104,7998
Переменная X 1 0,103350894 0,041834 2,470506 0,025119 0,014667 0,192035
Переменная X 2 2,597229942 0,881817 2,945315 0,009503 0,7278613 4,466599
Переменная X 3 13,92581958 0,980218 14,20685 1,72E-10 11,84785 16,00379

Таким образом, пригодная для целей прогнозирования модель записывается в следующем виде:

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

11. Проверки обоснованности величины арендной платы, которую предприниматель желает назначить за свой отель

11.1. Расчет t-статистик по формуле (3.1.20)

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru ; Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

11.2. Сравнение полученных t-статистик с табличным значением Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru (см. Приложение) свидетельствует о том, что первая величина арендной платы незначимо отличается от средней прогнозируемой величины, а вторая – значимо. Следовательно, предприниматель, назначая арендную плату 165 тыс. руб. в год рискует в большей степени не найти арендаторов своего отеля, чем при установлении размера платы в 162тыс. руб. или в 161 тыс. руб., поскольку 165 тыс. руб. существенно превышает средний сложившийся уровень арендной платы трехзвездных отелей в данной курортной зоне.

Задания для самостоятельной работы

Задание 1.2.3.1. В табл. 1.2.3.1 представлены данные о производительности труда, фондоотдаче и уровне рентабельности пятнадцати предприятий. Используя матричную форму метода наименьших квадратов, по данным этой таблицы рассчитайте:

1) коэффициенты регрессии;

2) стандартные ошибки коэффициентов регрессии;

3) множественный индекс корреляции;

4) скорректированное значение множественного коэффициента детерминации;

5) бетта-коэффициенты;

6) парные коэффициенты корреляции;

7) множественный коэффициент корреляции через бета-коэффициенты и парные коэффициенты корреляции;

8) дисперсионное отношение Фишера;

9) частные F-критерии для каждого фактора.

Т а б л и ц а 1.2.3.1

№ предприятия Производительность труда, руб. Фондоотдача, руб. Уровень рентабельности, %
1,08 20,1
1,05 12,9
0,99 18,0
1,02 11,7
0,98 17,9
1,04 16,8
1,03 15,6
1,10 14,3
1,03 18,1
0,89 17,8
0,78 13,0
0,99 14,2
1,43 24,2
1,03 20,0
1,05 19,3

Задание 1.2.3.2. Руководство крупной компании ЗАО «Надежная связь», предоставляющая услуги мобильной и стационарной телефонной связи, а также осуществляющая продажу телефонных аппаратов, планирует в следующем квартале расширить свой бизнес, освоив за счет прибыли компании новую рыночную нишу – предоставление Интернет-услуг в собственном Интернет-салоне. Получите прогнозные оценки прибыли компании в следующем квартале для того, чтобы у руководства сложилось представление о возможном размере финансового обеспечения этого бизнес-плана. Для построения прогнозной модели множественной регрессии воспользуйтесь данными табл. 1.2.3.2. Прогнозные оценки факторов, влияющие на прибыль компании, необходимо получить с помощью трендовых моделей.

Т а б л и ц а 1.2.3.2

Квар-тал Прибыль компании, тыс. руб. Общее число абонентов компании Выручка за мобильный трафик, тыс. руб. Затраты на поддержание и обновление программного обеспечения, руб.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Задание 1.2.3.3. Экономисту-аналитику одной крупной компании было поручено указать обоснованный размер заработной платы руководителя будущего филиала этой компании. Ожидаемый объем среднемесячных продаж филиала составит 6500 тыс. у.е. Возраст сотрудника, который, как планируется, должен занять пост руководителя, – 45 лет, он имеет законченное высшее образование, а срок работы в должности директора другого филиала компании – 3 года. С целью решения поставленной задачи экономист-аналитик решил сначала изучить опыт других компаний, собрав сведения представленные в табл. 1.2.3.3, в которой за Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru обозначена среднемесячная заработная плата руководителей, у.е.; за Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru – возраст, лет; за Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru – образование (0 – нет высшего образование, 1 – незаконченное высшее, 2 – высшее); за Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru – срок работы в должности руководителя, лет; за Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru – годовой объем продаж компании, тыс. у.е.

Т а б л и ц а 1.2.3.3

Компания Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Ком-пания Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru
1 652 12 949
1 948 1 227 5 061
1 735 1 712 1 929
1 681 1 488 2 643
1 461 5 673 1 084
1 117 1 752 5 137
1 475 2 497
2 094 10 818 2 097
2 686 2 342
3 409 14 021
2 244 4 451
1 539 1 911
2 833 11 663 1 554 1 435
2 366 1 314
1 856 4 864 2 301

Постройте модель множественной регрессии, отражающую зависимость среднемесячной зарплаты от указанных факторов, и оцените ее качество. Используя построенную модель, осуществите расчет заработной платы руководителя будущего филиала компании.

Задание 1.2.3.4. Исследуйте зависимость урожайности зерновых культур (ц/га) от следующих факторов сельскохозяйственного производства:

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ruчисло тракторов на 100 га;

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ruчисло зерноуборочных комбайнов на 100 га;

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ruчисло орудий поверхностной обработки почвы на 100 га;

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ruколичество удобрений, расходуемых на гектар (т/га);

Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ruколичество химических средств защиты растений, расходуемых на гектар (ц/га).

Исходные данные для 20 районов области приведены в табл. 1.2.3.4.

Т а б л и ц а 1.2.3.4

Районы области Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru
-1- -2- -3- -4- -5- -6- -7-
9,7 1,59 0,26 2,05 0,32 0,14
8,4 0,34 0,28 0,46 0,59 0,66
9,0 2,53 0,31 2,46 0,30 0,31
9,9 4,63 0,40 6,44 0,43 0,59
9,6 2,16 0,26 2,16 0,39 0,16
8,6 2,16 0,30 2,69 0,32 0,17

О к о н ч а н и е т а б л. 1.2.3.4

-1- -2- -3- -4- -5- -6- -7-
12,5 0,68 0,29 0,73 0,42 0,23
7,6 0,35 0,26 0,42 0,21 0,08
6,9 0,52 0,24 0,49 0,20 0,08
13,5 3,42 0,31 3,02 1,37 0,73
9,7 1,78 0,30 3,19 0,73 0,17
10,7 2,40 0,32 3,30 0,25 0,14
12,1 9,36 0,40 11,51 0,39 0,38
9,7 1,72 0,28 2,26 0,82 0,17
7,0 0,59 0,29 0,60 0,13 0,35
7,2 0,28 0,26 0,30 0,09 0,15
8,2 1,64 0,29 1,44 0,20 0,08
8,4 0,09 0,22 0,05 0,43 0,20
13,1 0,08 0,25 0,03 0,73 0,20
8,7 1,36 0,26 0,17 0,99 0,42

Задание 1.2.3.5. Торговое предприятие «Альянс» имеет сеть, состоящую из 12 магазинов, информация о деятельности которых представлена в табл. 1.2.3.5. Постройте:

1) диаграммы рассеяния годового товарооборота ( Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru ) в зависимости от торговой площади ( Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru ) и среднего числа посетителей в день ( Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru ) и определите форму связи между результирующим показателем и каждым из этих факторов;

2) двухфакторное регрессионное уравнение, отражающее зависимость переменной Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru от соответствующих факторов Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru и Задания для самостоятельной работы. 1.2.1.1. Оценки вектора коэффициентов регрессии: - student2.ru .

Оцените:

1) качество построенного уравнения;

2) частные коэффициенты эластичности годового товарооборота от торговой площади и от среднего числа посетителей.

Т а б л и ц а 1.2.3.5

№ мага-зина Годовой товарооборот, млн. руб. Торговая площадь, тыс. кв.м. Среднее число посетителей в день, тыс. чел.
19,76 0,24 8,25
38,09 0,31 10,24
40,95 0,55 9,31
41,08 0,48 11,01
56,29 0,78 8,54
68,51 0,98 7,51
75,01 0,94 12,36
89,05 1,21 10,81
91,13 1,29 9,89
91,26 1,12 13,72
99,84 1,29 12,27
108,55 1,49 13,92

Наши рекомендации