Методические указания к решению задач 3.

В электротехнике простейшим переменным сигналом является гармонический (ЭДС - е(t), напряжение - (u(t), ток - i(t)).

Применяют несколько способов представления гармонических (синусоидальных – sin или косинусоидальных –cos) электрических величин.

1. Временной (аналитический) способ - ток задается аналитически в виде функции времени (1.1). Аналитически гармонический сигнал (например, напряжение) записывается выражением:

u(t) = Umsin(ω0t+φ0) , (1.1)

где u(t) – мгновенное значение напряжения – напряжение в момент времени t.

Временная диаграмма гармонического сигнала приведена на рис.1.1. Он характеризуется следующими тремя основными параметрами:

1. um – амплитуда, величина наибольшего отклонения от нуля, (В- вольт);

2. Т – период, наименьший интервал времени, по истечении которого мгновенные величины повторяются, измеряется в (сек), с ним связаны f=1/Т – циклическая частота, измеряется в (Гц) и ω0 =2πf – угловая частота - (рад/с);

3. φ0 – начальная фаза, (рад). Выражение в скобках - (ω0t+φ0)=ψ(t) называют полная фаза. Отсюда φ0 = ψ(t=0).

Методические указания к решению задач 3. - student2.ru Методические указания к решению задач 3. - student2.ru

Рис. 1.2. Временные диаграммы двух гармонических сигналов

Кроме амплитуд о величине периодических сигналов судят по их среднеквадратичным (действующим) значениям за период, I, U, E –

Методические указания к решению задач 3. - student2.ru , Методические указания к решению задач 3. - student2.ru , Методические указания к решению задач 3. - student2.ru .

Для синусоидальных сигналов законы Кирхгофа и Ома и анализ цепей удобно проводить используя комплексную форму записи.

При комплексном представлении гармоническое колебание как функция времени заменяется комплексной амплитудой, т.е. комплексным числом, не зависящим от времени. Это делается для упрощения записи и выполнения операций над гармоническими функциями.

Комплексная амплитуда содержит информацию о двух важнейших параметрах гармонического сигнала – об амплитуде и начальной фазе. Комплексная амплитуда и гармоническая функция времени при известной частоте ω связаны взаимнооднозначно, т.е.

Методические указания к решению задач 3. - student2.ru Методические указания к решению задач 3. - student2.ru .

В комплексном методе расчета электрических цепей переменного тока ЭДС, напряжения, токи и сопротивления представляют в виде комплексов. Комплексные значения величин, изменяющихся по гармоническому закону, обозначают, соответственно: Методические указания к решению задач 3. - student2.ru , модули этих величин - E, U, I.

Комплекс полного сопротивления обозначают буквой Z, комплекс полной проводимости - буквой Y, модули этих величин - Z и Y.

Комплексные числа записываются в одной из следующих форм:

- алгебраическая форма Методические указания к решению задач 3. - student2.ru =a + jb

- тригонометрическая форма Методические указания к решению задач 3. - student2.ru =A (cosa + jsina)

- показательная форма Методические указания к решению задач 3. - student2.ru =А eja

- полярная форма Методические указания к решению задач 3. - student2.ru =А Ða,

где А - модуль комплексного числа А= Методические указания к решению задач 3. - student2.ru Методические указания к решению задач 3. - student2.ru

a - аргумент комплексного числа a = arctgМетодические указания к решению задач 3. - student2.ru

Методические указания к решению задач 3. - student2.ru - мнимая единица.

Если напряжение и ток изменяются по закону синуса

u = Um sin (wt + ψu ); i = Im sin (wt + ψi ),

то эти величины в комплексной форме записываются:

Методические указания к решению задач 3. - student2.ru .

Комплекс полного сопротивления цепи, состоящей из последовательно включенных R, L и С, записывается

Z = R + jwL - j Методические указания к решению задач 3. - student2.ru = R + j(wL - Методические указания к решению задач 3. - student2.ru ) = R +jX = Z ejj,

где X = XL - XC = wL- Методические указания к решению задач 3. - student2.ru- реактивное сопротивление цепи;

Методические указания к решению задач 3. - student2.ru- полное сопротивление;

j = arctg (X/R) -угол сдвига фаз между напряжением и током в электрической цепи.

Пример 1. Например, гармоническому колебанию u(t) = 256 cos(2π100t – 45°) соответствует комплексная амплитуда Методические указания к решению задач 3. - student2.ru m = 256 ej45.

Справедливо и обратное. Если известна комплексная амплитуда гармонического сигнала Методические указания к решению задач 3. - student2.ru m = 256 ej45 и частота ω=2π100, то этому соответствует гармоническое колебание u(t) = 256 cos(2π100t – 45°).

Методические указания к решению задач 3. - student2.ru Геометрически комплексная амплитуда представляет собой вектор, характеризуемый модулем и фазой, равными, соответственно, амплитуде и начальной фазе гармонической функции, как это показано на рис. 4.7,

Законы Ома и Кирхгофа в комплексной форме

Они имеют совершенно такой же вид, как и соответствующие уравнения для цепей постоянного тока. Только токи, ЭДС, напряжения и сопротивления входят в уравнение в виде комплексных величин: комплексных амплитуд и комплексных сопротивлений.

1. Закон Ома.Он устанавливает связь между комплексными амплитудами тока и напряжения на участке цепи. 1.8. Закон Ома для участка цепи, не содержащего источника ЭДС (рис. 1.8):

Методические указания к решению задач 3. - student2.ru Методические указания к решению задач 3. - student2.ru Методические указания к решению задач 3. - student2.ru ,

Методические указания к решению задач 3. - student2.ru где Методические указания к решению задач 3. - student2.ru и Методические указания к решению задач 3. - student2.ru - комплексные амплитуды тока и напряжения на участке цепи; Z – комплексное сопротивление участка цепи, Методические указания к решению задач 3. - student2.ru –комплексные амплитуды потенциалов на данном участке цепи.

2. Первый закон Кирхгофа: Алгебраическая сумма комплексных амплитуд (действующих значений) токов в узле равна нулю

Методические указания к решению задач 3. - student2.ru . (1.5 а)

3. Второй закон Кирхгофа: В замкнутом контуре электрической цепи алгебраическая сумма комплексных амплитуд (действующих значений, ЭДС) равна алгебраической сумме комплексных падений напряжений в нём.

Методические указания к решению задач 3. - student2.ru . (1.5 б)

Наши рекомендации