Тема 2.1.-2.2. Вычисление наращенной суммы на основе сложных дискурсивных процентов. Сравнение интенсивности процессов наращивании и дисконтирования по разным видам процентных ставок.
В финансовой практике значительная часть расчетов ведется с использованием схемы сложных процентов. Применение схемы сложных процентов целесообразно в тех случаях, когда:
− проценты не выплачиваются по мере их начисления, а присоединяются к первоначальной сумме долга. Присоединение начисленных процентов к сумме долга, которая служит базой для их начисления, называется капитализацией процентов;
− срок ссуды более года.
Если процентные деньги не выплачиваются сразу по мере их начисления, а присоединяются к первоначальной сумме долга, то долг, таким образом, увеличивается на невыплаченную сумму процентов, и последующее начисление процентов происходит на увеличенную сумму долга:
– за один период начисления;
– за два периода начисления;
отсюда, за n периодов начисления формула примет вид: ,
где – наращенная сумма долга; – первоначальная сумма долга; i – ставка процентов в периоде начисления; n – количество периодов начисления. Эта формула называется формулой сложных процентов.
Различие начисления простых и сложных процентов в базе их начисления. Если простые проценты начисляются все время на одну и ту же первоначальную сумму долга, т.е. база начисления является постоянной величиной, то сложные проценты начисляются на увеличивающуюся с каждым периодом начисления базу.
Графическая иллюстрация соотношения наращенной суммы по простым и сложным процентам представлена на рисунке.
Рис.1 Наращение по простым и сложным процентам |
Как видно из рисунка, при краткосрочных ссудах начисление по простым процентам предпочтительнее, чем по сложным процентам; при сроке в один год разница отсутствует, но при среднесрочных и долгосрочных ссудах наращенная сумма, рассчитанная по сложным процентам значительно выше, чем по простым.
При любом i,
если 0 < n < 1, то (1 + ni) > (1 + i)n
если n > 1, то (1 + ni) < (1 + i)n
если n = 1, то (1 + ni) = (1 + i)n
Таким образом, для лиц, предоставляющих кредит:
− более выгодна схема простых процентов, если срок ссуды менее года (проценты начисляются однократно в конце года);
− более выгодной является схема сложных процентов, если срок ссуды превышает один год;
− обе схемы дают одинаковый результат при продолжительности периода один год и однократном начислении процентов.
Достаточно часто финансовые контракты заключаются на период, отличающийся от целого числа лет.
В случае, когда срок финансовой операции выражен дробным числом лет, начисление процентов возможно с использованием двух методов:
− общий метод заключается в прямом расчете по формуле сложных процентов:
, ,
где n – период сделки; a – целое число лет; b – дробная часть года.
− смешанныйметод расчета предполагает для целого числа лет периода начисления процентов использовать формулу сложных процентов, а для дробной части года – формулу простых процентов:
.
Поскольку b < 1, то (1 + bi) > (1 + i)a, следовательно, наращенная сумма будет больше при использовании смешанной схемы.
Cмешанная схема более выгодна кредитору.