Классификация точек разрыва

Непрерывность функции в точке

Пусть функция f(x) определена в некоторой окрестности O(x0) точки x0 (включая саму точку x0).

Функция f(x) называется непрерывной в точке x0, если существует limx → x0 f(x) , равный значению функции f(x) в этой точке:

 
lim
x → x0

f(x) = f(x0),

(1)

т.е.

  " O( f(x0) ) $ O(x0) : x Î O(x0) Þ f(x) Î O( f(x0) ) .  

Замечание. Равенство (1) можно записать в виде:

 
lim
x → x0

f(x) = f (

lim
x → x0

x ),

 

т.е. под знаком непрерывной функции можно переходить к пределу.

Пусть Δx = x − x0 — приращение аргумента, Δy = f(x) − f(x0 ) — соответствующее приращение функции.

Необходимое и достаточное условие непрерывности функции в точке

Функция y = f(x) непрерывна в точке х0 тогда и только тогда, когда

 
lim
Δx → 0

Δy = 0.

(2)

Замечание. Условие (2) можно трактовать как второе определение непрерывности функции в точке. Оба определения эквивалентны.

Пусть функция f(x) определена в полуинтервале [x0, x0 + δ ).

Функция f(x) называется непрерывной справа в точке x0, если существует односторонний предел

 
lim
x → x0 + 0

f(x) = f(x0).

 

Пусть функция f(x) определена в полуинтервале (x0 − δ, x0].

Функция f(x) называется непрерывной слева в точке x0, если существует односторонний предел

 
lim
x → x0 − 0

f(x) = f(x0).

 

Непрерывность суммы, произведения и частного двух непрерывных функций

Теорема 1. Если функции f(x) и g(x) непрерывны в точке х0, то в этой точке непрерывны

  f(x) ± g(x), f(x) · g(x),
f(x)
g(x)

(g(x0) ≠ 0).

 

Непрерывность сложной функции

Теорема 2. Если функция u(x) непрерывна в точке х0, а функция f(u) непрерывна в соответствующей точке u0 = f(x0), то сложная функция f(u(x))непрерывна в точке х0.

Все элементарные функции непрерывны в каждой точке их областей определения.

Локальные свойства непрерывных функций

Теорема 3(ограниченность непрерывной функции). Если функция f(x) непрерывна в точке x0, то существует окрестность O(x0), в которой f(x)ограничена.

Доказательство следует из утверждения об ограниченности функции, имеющей предел.

Теорема 4 (устойчивость знака непрерывной функции). Если функция f(x) непрерывна в точке x0 и f(x0) ≠ 0, то существует окрестность точки x0, в которой f(x) ≠ 0, причем знак f(x) в этой окрестности совпадает со знаком f(x0).

Классификация точек разрыва

Условие (1) непрерывности функции f(x) в точке x0 равносильно условию

  f(x0 − 0) = f(x0 + 0) = f(x0), (3)

где f(x 0 − 0) =

lim
x → x0 − 0

f(x) и f(x0 + 0) =

lim
x → x0 + 0

f(x) — односторонние пределы функции f(x) в точке x0.

При нарушении условия (3) точка x0 называется точкой разрыва функции f(x). В зависимости от вида нарушения условия (3) точки разрыва имеют различный характер и классифицируются следующим образом:

1. Если в точке x0 существуют односторонние пределы f(x0 − 0), f (x0 + 0) и

  f(x0 − 0) = f(x0 + 0) ≠ f(x0),  

то точка х0 называется точкой устранимого разрыва функции f(x) (рис. 1).

Классификация точек разрыва - student2.ru

Замечание. В точке x0 функция может быть не определена.

2. Если в точке x0 существуют односторонние пределы f(x0 − 0), f (x0 + 0) и

  f(x0 − 0) ≠ f(x0 + 0),  

то точка x0 называется точкой разрыва с конечным скачком функции f(x) (рис.2).

Классификация точек разрыва - student2.ru

Замечание. В точке разрыва с конечным скачком значение функции может быть любым, а может быть и не определено.

Точки устранимого разрыва и конечного скачка называются точками разрыва 1–го рода. Их отличительным признаком является существование конечных односторонних пределов f(x0 − 0) и
f(x0 + 0).

3. Если в точке x0 хотя бы один из односторонних пределов f(x0 − 0), f (x0 + 0) равен бесконечности или не существует, то x0 называется точкой разрыва 2–го рода (рис. 3).

Классификация точек разрыва - student2.ru

Если хотя бы один из односторонних пределов f(x0 − 0), f (x0 + 0) равен бесконечности, то прямая x = x 0 называется вертикальной асимптотой графика функции y = f(x).

Наши рекомендации