Знакочередующиеся числовые ряды
Ряд вида , где , называется знакочередующимся рядом. Для знакочередующегося ряда справедлива теорема Лейбница.
Теорема Лейбница
Если для знакочередующегося ряда выполняется 1) ; 2) , то ряд сходится и его сумма S удовлетворяет условию .
Наряду со знакочередующимся рядом рассмотрим ряд из абсолютных величин , члены которого – положительные числа. Если ряд из абсолютных величин сходится, то знакочередующийся ряд тоже сходится и называется абсолютно сходящимся. Если ряд из абсолютных величин расходится, а знакочередующийся ряд сходится (по теореме Лейбница), то называется условно сходящимся.
Исследовать знакочередующиеся ряды на абсолютную и условную сходимость можно по следующей схеме:
1. Вычислить . Если , то ряд расходится по достаточному признаку расходимости и исследование этого ряда закончено.
2. Составить ряд из модулей ― знакоположительный числовой ряд. Используя признаки сходимости рядов с положительными членами, исследовать его на сходимость. Если ряд из модулей сходится, то исходный знакочередующийся ряд сходится абсолютно и исследование этого ряда закончено.
3. Проверить выполнение условий теоремы Лейбница для знакочередующихся рядов. Если условия выполнены, то знакочередующийся ряд сходится условно, если нет – то расходится.
Пример 8. Исследовать знакочередующиеся ряды на абсолютную и условную сходимость.
а) .
Решение. Общий член ряда .
1. Проверим . Следовательно, исходный ряд расходится по достаточному признаку расходимости.
Ответ: расходится.
б) .
Решение. Общий член ряда .
1. Проверим .
2. Составим ряд из модулей ― знакоположительный числовой ряд, и применим к нему интегральный признак Коши. Положим . Эта функция удовлетворяет требованиям интегрального признака Коши. Рассмотрим несобственный интеграл =
= число.
Следовательно, несобственный интеграл и ряд из модулей сходятся одновременно по интегральному признаку Коши. Поэтому исходный знакочередующийся ряд сходится абсолютно.
Ответ: сходится абсолютно.
в) .
Решение. Общий член ряда .
1. Проверим .
2. Составим ряд из модулей, ― знакоположительный ряд, и применим к нему второй признак сравнения. Для сравнения возьмём расходящийся обобщённый гармонический ряд с общим членом .
Вычислим . Следовательно, оба ряда расходятся одновременно и абсолютной сходимости исходного знакочередующегося ряда нет.
3. Проверим выполнение условий теоремы Лейбница для знакочередующихся рядов:
а) (это условие проверено в п.1);
б) Последовательность убывает .
Проверим монотонное убывание с помощью производной:
при любых значениях n.
Следовательно, последовательность убывает. Оба условия теоремы Лейбница выполняются и исходный знакочередующийся ряд сходится условно.
Ответ: сходится условно.