Принцип действия магнитопорошкового метода контроля

Магнитопорошковый метод - это метод неразрушающего контроля поверхностей изделий из ферромагнитных материалов в их производстве и эксплуатации.

Суть магнитопорошкового контроля:

Магнитный поток в бездефектной части изделия не меняет своего направления. Если же на пути магнитного потока встречаются участки с пониженной магнитной проницаемостью, например, дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т.д.), то часть силовых линий магнитного поля выходит из детали наружу и входит в нее обратно, при этом возникают местные магнитные полюсы (N и S) и, как следствие, магнитное поле над дефектом. Т.к. магнитное поле над дефектом неоднородно, то на магнитные частицы, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных силовых линий, то есть к дефекту. Частицы в области поля дефекта намагничиваются и притягиваются друг к другу как магнитные диполи под действием силы так, что образуют цепочные структуры, ориентированные по магнитным силовым линиям поля.

Наибольшая вероятность выявления дефектов достигается в случае, когда плоскость дефекта составляет угол 90 град. с направлением намагничивающего поля (магнитного потока). С уменьшением этого угла чувствительность снижается и при углах, существенно меньших 90 град. дефекты могут быть не обнаружены.

Чувствительность магнитопорошковой дефектоскопии МПД определяется:

· магнитными характеристиками материала контролируемого изделия (магнитной индукцией (В)),

· остаточной намагниченностью (Br),

· максимальной магнитной проницаемостью (µmax),

· коэрцитивной силой (Н0),

· шероховатостью поверхности контроля,

· напряженностью намагничивающего поля, его ориентацией по отношению к плоскости дефекта,

· качеством дефектоскопических средств и освещенностью контролируемой поверхности.

Магнитопорошковый метод применяется практически во всех отраслях промышленности:

 авиапромышленность

 машиностроение

 автомобильная промышленность

 металлургия

 транспорт (авиация, железнодорожный, автотранспорт)

 судостроение

 строительство (стальные конструкции, трубопроводы)

Методика применения магнитопорошкового контроля

Магнитопорошковый метод применяется для выявления в объектах разных размеров и формы, изготовленных из ферромагнитных материалов поверхностных и подповерхностных дефектов. С помощью магнитопорошкового метода могут быть обнаружены различные трещины, волосовины и закаты, непровары сварных соединений и другие дефекты шириной раскрытия несколько микрометров. Метод может быть использован для контроля объектов с немагнитным покрытием.

Существуют различные виды магнитопорошкового контроля:

 «Сухой» и «мокрый» способы нанесения индикатора на контролируемый объект

 Флуоресцентный или цветной индикатор для контроля при ультрафиолетовом УФ или дневном свете

Феррозондовый метод контроля

Феррозондовый методконтроля применяется для выявления поверхностных и под поверхностных (глубиной до 10 мм) дефектов типа нарушения сплошности материала: волосовины, трещин, раковин, закатов, плен и т.п., а также для выявления дефектов типа нарушения сплошности сварных соединений и для контроля качества структуры и геометрических размеров изделий. Феррозондовый контроль используется для определения степени размагниченности изделий после магнитного контроля.

Феррозондовый метод можно применять на изделиях любых размеров и форм, если отношение их длины к наибольшему размеру в поперечном направлении и их магнитные свойства дают возможность намагничивания до степени, достаточной для создания магнитного поля рассеяния дефекта, обнаруживаемого с помощью преобразователя.

Область применения и классификация акустических методов контроля.

Понятие ультразвука

Под акустическим видом неразрушающего контроля понимают вид, основанный на регистрации параметров упругих колебаний, возбуждаемых и (или) возникающих в контролируемом объекте.
В акустическом виде неразрушающего контроля чаще всего применяют звуковые и ультразвуковые частоты, т.е. используют диапазон частот приблизительно от 0,5 кГц до 30 МГц. В случае, когда при контроле используют частоты свыше 20 кГц, допустимо применение термина «ультразвуковой» вместо термина «акустический».

По характеру взаимодействия упругих колебаний с контролируемым материалом акустические методы подразделяют на следующие основные методы:

· прошедшего излучения (теневой, зеркально-теневой);

· отраженного излучения (эхо-импульсный);

· резонансный;

· импедансный;

· свободных колебаний;

· акустико-эмиссионный.

По характеру регистрации первичного информативного параметра акустические методы подразделяются на амплитудный, частотный, спектральный.

Акустические методы неразрушающего контроля решают следующие контрольно-измерительные задачи:

· метод прошедшего излучения выявляет глубинные дефекты типа нарушения сплошности, расслоения, непроклёп, непропаи;

· метод отраженного излучения обнаруживает дефекты типа нарушения сплошности, определяет их координаты, размеры, ориентацию путём прозвучивания изделия и приёма отраженного от дефекта эхо сигнала;

· резонансный метод применяется в основном для измерения толщины изделия (иногда применяют для обнаружения зоны коррозионного поражения, непропаев, расслоений в тонких местах из металлов);

· акустико-эмиссионный метод обнаруживает и регистрирует только развивающиеся трещины или способные к развитию под действием механической нагрузки (квалифицирует дефекты не по размерам, а по степени их опасности во время эксплуатации). Метод имеет высокую чувствительность к росту дефектов - обнаруживает увеличение трещины на (1...10) мкм, причём измерения, как правило, проходят в рабочих условиях при наличии механических и электрических шумов;

· импедансный метод предназначен для контроля клеевых, сварных и паяных соединений, имеющих тонкую обшивку, приклеенную или припаянную к элементам жёсткости. Дефекты клеевых и паяных соединений выявляются только со стороны ввода упругих колебаний;

· метод свободных колебаний применяется для обнаружения глубинных дефектов

Мировой опыт показывает, что использование средств ультразвукового неразрушающего контроля в машиностроении, металлургии, энергетике, строительстве, транспортной промышленности способствует улучшению качества продукции, обеспечению безаварийной эксплуатации энергетических установок и транспортных средств, повышению производительности труда, снижению материалоемкости конструкций и сооружений, улучшению качества выпускаемой продукции, экономии сырьевых и трудовых ресурсов.

Акустический метод неразрушающего контроля находит свое применение в различных областях: котлонадзор, системы газоснабжения, подъемные сооружения, объекты горнорудной промышленности, объекты угольной промышленности, нефтяная и газовая промышленность, металлургическая промышленность, оборудование взрывопожароопасных и химически опасных производств, объекты железнодорожного транспорта, объекты хранения и переработки зерна

Наши рекомендации