Производная и её приложение
141-150. Найти производные данных функций.
141. а) ; б) ;
в) ; г) ; д) .
142. а) ; б) ; в) ;
г) ; д) .
143. а) ; б) ; в) ;
г) ; д) .
144. а) ; б) ;
в) ; г) ; д) .
145. а) ; б) ; в) ;
г) ; д) .
146. а) ; б) ;
в) ; г) ; д) .
147. а) ; б) ;
в) ; г) ; д) .
148. а) ; б) ;
в) ; г) ; д) .
149. а) ; б) ; в) ;
г) ; д) .
150. а) ; б) ;
в) ; г) ; д) .
151-160. Найти и .
151. а) ; б) .
152. а) ; б) .
153. а) ; б) .
154. а) ; б) .
155. а) ; б) .
156. а) ; б) .
157. а) ; б) .
158. а) ; б) .
159. а) ; б) .
160. а) ; б) .
Приложения дифференциального исчисления
191-200. Исследовать методами дифференциального исчисления функцию и, используя результаты исследования, построить ее график.
191. . 192. .
193. . 194. .
195. . 196. .
197. . 198. .
199. . 200. .
Неопределённый и определённый интегралы
281-290. Найти неопределенные интегралы. В двух примерах (пункты а и б) проверить результаты дифференцированием.
281. а) ; б) ;
в) ; г) .
282. а) ; б) ;
в) ; г) .
283. а) ; б) ;
в) ; г) .
284. а) ; б) ;
в) ; г) .
285. а) ; б) ;
в) ; г) .
286. а) ; б) ;
в) ; г) .
287. а) ; б) ;
в) ; г) .
288. а) ; б) ;
в) ; г) .
289. а) ; б) ;
в) ; г) .
290. а) ; б) ;
в) ; г) .
301-310. Вычислить несобственный интеграл или доказать его расходимость.
301. . 302. . 303. . 304. . 305. . 306. .
307. . 308. . 309. . 310. .
МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ ЗАДАНИЙ
Задание 11 – 20
Для решения задач 11 – 20 рекомендуется учебное пособие
Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах.
Ч.1. М.: Оникс 21 век. 2005. Гл. I –IV, стр.39 – 91.
Рассмотрим решение аналогичной задачи, взяв координаты вершины пирамиды SABC: А(-3;0;0); В(0;2;0); С(0;0;6); S(-3;4;5).
1) Длину ребра АВ находим по формуле:
2) Угол между рёбрами найдём по формуле косинуса угла между векторами , координаты которых определяются так:
α
φ
Для решения задания 3) целесообразно решить задачу 7). Уравнение плоскости составим по уравнению
Нормальный вектор этой плоскости
4) Площадь определяем с помощью векторного произведения:
5) Объём пирамиды находится через вычисление смешанного произведения векторов Изучите понятие смешанного произведения, формулу объёма пирамиды и формулу для вычисления смешанного произведения трёх векторов. Решите самостоятельно.
6) Уравнение прямой
Канонические уравнения прямой, вектор направляющий вектор прямой
8) Для определения проекции вершины на плоскость выполняются следующие действия:
а) составляется уравнение высоты пирамиды .
б) находится точка пересечения высоты и основания решением системы, содержащей уравнение высоты и уравнение плоскости.
Решение: вектор удобнее взять
Он будет направляющим для По уравнению
вершина , т.е.
.
Система решается подстановкой
Подставив во второе уравнение, найдём значение , а следовательно значения
Точка - проекция точки на плоскость
9) Длину высоты пирамиды можно найти по формуле или по формуле расстояния от точки до плоскости – наиболее удобно.
Изучите формулы самостоятельно, решив задание 9).
Задание 51 – 60
Дана система линейных уравнений
Решить систему а) матричным методом, б) методом Крамера, в) методом Гаусса.
а) данной системе соответствует матричное уравнение , которое решается по формуле: . Матрицы имеют вид:
Находим обратную матрицу
Находим матрицу
б) - формулы Крамера. Вычислим все определители
в) Метод Гаусса.
Составим расширенную матрицу и преобразуем её с помощью элементарных преобразований.
Из полученной матрицы, выделяя последнюю строку, видим, что исключены неизвестные и . Найдём . .
Вторая строка соответствует уравнению:
или
Аналогично из первой строки напишем уравнение:
Итак:
Задание 91 – 100.
Дано комплексное число
Записать число в геометрической и тригонометрической формах и найти все корни уравнения
Рекомендуемая литература: Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах, ч. II, гл.III, §7, стр.97 – 101.
Найдём алгебраическую форму комплексного числа
Тригонометрическая форма комплексного числа определится по формуле .
Изобразив число на плоскости, найдём и .
-1
Итак, число
Найдём корни уравнения
вычислим по формуле Муавра
Задание 111 – 120
Вычислить пределы:
а)
За скобку выносили наивысшую степень для числителя и знаменателя.
б)
Для исключения неопределённости требуется числитель и знаменатель разложить на множители.
в)
В данном случае для исключения неопределённости использованы эквивалентные бесконечно малые, например
г) Числитель и знаменатель умножаем на выражение, сопряжённое числителю
Задание 141– 150
Найти производные следующих функций:
а) б) ;
в) г) ;
д) .
б)
в)
г)
Прологарифмируем обе части равенства
Продифференцируем обе части равенства
д)
Функция задана неявно. Учитываем, что аргумент, функция.
Задание 151 – 160
Найти функций:
Решение:
а)
б)
Задание 191 – 200
Исследовать методами дифференциального исчисления функцию и построить её график.
Рассмотрим свойства функции:
1. Область определения:
2. Чётностьь, нечётность функции:
Функция общего вида.
3. Асимптоты.
а) Так как , то прямая является вертикальной асимптотой:
б) – наклонная асимптота.
Найдём
Найдём
– уравнение наклонной асимптоты.
4. Найдём точки экстремума и интервалы монотонности функции:
Так как то действительных корней нет, значит, нет точек экстремума.
Производная на всей области определения, значит функция
убывает.
5. Точки пересечения с координатными осями
а) с осью при ,
б) с осью при .
Используя исследование функции, строим график (схематично).
Задания 141-150, 151-160, 191-200 легко выполнить, используя учебное пособие П.Е.Данко, А.Г.Попов, Т.Я.Кожевникова. Высшая математика в упражнениях и задачах ч.I гл. VII §§ 1-2 стр. 151-183.
Задание 281 – 290
Найти неопределённые интегралы, выполнив проверку дифференцированием в первых двух примерах.
Решение:
Проверка:
Метод интегрирования по частям для функции
Формула:
Проверка:
Найдём коэффициенты
.
Литература
Основная литература
1.Фихтенгольц Г.М. Основы математического анализа [Электронный ресурс]: учебник для вузов. Ч.1/ Г.М. Фихтенгольц. – 10-е изд., стер. – Электрон. текстовые дан. – Санкт-Петербург; Москва; Краснодар: Лань, 2015. – 440 с.
2. Справочник по математике для бакалавров [Электронный ресурс]: учебное пособие для вузов / [А. Ю. Вдовин и др.]. – Электрон. текстовые дан. – Санкт-Петербург; Москва; Краснодар: Лань, 2014. – 79 с.
3. Высшая математика для экономических специальностей [Текст]: учебник и практикум для вузов/ Н.Ш. Кремер и др.; под ред. Н.Ш. Кремера. – 3-е изд., перераб. и доп. Москва: Юрайт, 2011. – 909 с.
4. Туганбаев А.А. Задачи и упражнения по высшей математике для гуманитариев [Электронный ресурс] : учебное пособие для вузов / А. А. Туганбаев. – 4-е изд., испр. и доп. – Электрон. текстовые дан. – Москва: Флинта, 2011. – 399 с.
Дополнительная литература:
5. Пискунов Н.С. Дифференциальное и интегральное исчисления [Текст] / Н.С. Пискунов. В 2-х т. – М.: Интеграл-Пресс, 2005.
6. Шолохович Ф.А., Васин В.В. Основы высшей математики. [Текст] /
Ф.А. Шолохович, В.В. Васин. – Екатеринбург, Изд-во УрГУ, 2004.
7. Шипачев В.С. Основы высшей математики. [Текст] / В.С. Шипачев. – М.: Высшая школа, 2004.
8. Данко П.Е., Попов А.Г., Кожевникова Т..Я. Высшая математика в упражнениях и задачах. [Текст] / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. В 2 ч. – М.: Высшая школа, 2007.
9. Демидович Б.П., Кудрявцев В.А. Краткий курс высшей математики. [Текст] / Б.П. Демидович, В.А. Кудрявцев. – М.: ООО "Изд. Астрель", 2001
ЗАДАНИЯ и методические указания к выполнению