Розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики

Під час аналізу EEC та їхніх підсистем у часткових похідних застосовуються тільки рівняння гіперболічного й еліптичного типу. Рівняння гіперболічного типу у формі так званих телеграфних і хви­льових рівнянь використовуються під час аналізу електромагнітних процесів кіл з розподіленими параметрами (ліній електропередачі електричних машин, трансформаторів тощо). Еліптичні рівняння, на­приклад у формі рівнянь Лапласа та Пуассона, застосовуються під час розв'язування задач теорії електромагнітного поля.

Деякі методи розв'язування гіперболічних рівнянь. У загальному випадку диференційні рівняння у часткових похідних, подібно як і рівняння у звичайних похідних, мають безліч розв'язань, і для виділення з них деяких конкретних, однозначних розв'язань необхідно задати певні додаткові умови. Для гіперболічних рівнянь ці умови задають у формі початкових і крайових (граничних) умов.

Вивчення методів розв'язування таких рівнянь здійснимо на при­кладі рівнянь однорідної багатопровідної лінії, які запишемо у вигляді системи

  розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru (5.160)

де розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru – багатовимірний вектор-стовпець напруг проводів (у тому числі й тросів) відносно землі; розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru – відповідний вектор-стовпець струмів; розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru – квадратна матриця резистансів петель провід – земля (у розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru -му діагональному елементі записується сума резистансу розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru -го проводу й землі розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru , у взаємних елементах – резистанси землі) на одиницю довжини лінії; розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru – квадратна матриця індуктивностей (записуються по діагоналі) і взаємоіндуктивностей (записуються у взаємних елементах) петель провід – земля на одиницю довжини лінії; розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru – квадратна матриця кондуктансів на одиницю довжини лінії розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru – квадратна мат­риця динамічних ємностей на одиницю довжини лінії розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru – аргументи (від­стань від початку лінії і час). Поздовжні параметри (коефіцієнти матриць розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru та розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru ) лінії залежать від частоти, поперечні параметри (коефі­цієнти матриць розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru та розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru ) залежать від напруг.

Початкові умови для рівняння (5.160) задаються у вигляді законо­мірностей розподілу векторів напруг і струмів уздовж лінії в початко­вий момент часу, тобто

  розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru (5.166)

Крайові (граничні) умови визначаються конкретними схемами кін­цевих пристроїв і записуються у вигляді рівнянь стану цих пристроїв.

Рівняння (5.160) можна записати також у координатах напруг розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru – зарядів розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru , якщо підставити

  розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru  

Хвильовий метод. Він є узагальненням відомого з кур­су теоретичних основ елек­тротехніки методу Д'Аламбера. Викладемо цей метод у формі, розробленій Ленінградською школою електроенергетиків» Спершу розглянемо однофазну лінію. Застосовуючи до її рівнянь у вигляді (5.160) операторне перетворення, знаходимо (матриці перетво­рюються у власні параметри, вектори – у скаляри):

  розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru  

Розв'язування гіперболічних рівнянь на основі їх зведення до зви­чайних диференційних рівнянь. Такі методи широко застосовують завдяки простоті й наочності. Для розв'язування рівнянь гіперболіч­ного типу використовують звичайно метод прямих і метод розділення змінних.

Метод прямих. Цей метод полягає в апроксимації похідних по одній з незалежних змінних відношенням скінченних приростів функцій й аргументу, тобто по суті він є методом скінченних різниць по одному з аргументів. Така заміна похідних по одному аргументу перетворює диференційні рівняння у часткових похідних по двох не­залежних змінних до вигляду звичайних диференційних рівнянь. Очевидно, метод прямих справедливий для будь-яких типів рівнянь У часткових похідних (гіперболічних, еліптичних, параболічних).

Під час розв'язування телеграфних рівнянь (5.160) цей метод за­стосовують по аргументу розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru що набагато точніше, ніж по аргументу розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru , бо відносна зміна координат режиму вздовж ліній електропередачі набагато менша, ніж за часом. Отже, при однаковій точності по розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru одержуємо значно менше інтервалів, ніж по розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru .

Метод розділення змінних (метод Фур’є). Суть його полягає у знаходженні розв'язань диференційних рівнянь у вигляді добутків функцій окремих змінних, підставлення яких у вихідне диференційне рівняння в часткових похідних дає змогу перетворити їх у систему звичайних диференційних рівнянь.

Застосування методу Фур'є справедливе тільки для одновимірного рівняння. Тому в задачах електроенергетики для інтегрування телеграфних рівнянь він вико­ристовується у поєднанні з методами, які дають змогу зводити багатофазні системи до однофазних.

Отже, класичним прикладом гіперболічних рівнянь для застосування цього ме­тоду е система вигляду.

  розв'язування диференційних рівнянь у часткових похідних у задачах електроенергетики - student2.ru (5.183)

Наши рекомендации