Моделирование испытаний по схеме урн

Удобной механической моделью решения вероятностных задач является схема урн (схема случаев). Урна представляет собой непрозрачную емкость («черный ящик») достаточного объема, в которую помещены одинаковые, симметричные тела − элементы данного множества (шары) в известном количестве. Испытание (эксперимент) состоит в извлечении шара из «черного ящика» при обеспечении следующих симметричных условий:

- одинаковая возможность извлечения любого шара (случайные события равновероятны),

- шары извлекаются последовательно, по одному. В результате испытания исключается совместное появление двух и более шаров или в результате испытания наступление одного случайного события исключает наступление другого (случайные события несовместны);

- в результате испытаний появление известного конечного множества шаров, загруженных в урну, исчерпывает собой все возможные исходы или появление хотя бы одного из случайных событий является достоверным (случайные события образуют полную группу).

Случайные события называются случаями (множество элементарных событий), если в процессе проведения эксперимента обеспечиваются сформулированные три условия симметрии − равновероятность, несовместность, полнота группы событий. Тогда классическая вероятность случайного события Моделирование испытаний по схеме урн - student2.ru определяется как отношение числа элементарных исходов, благоприятствующих появлению события Моделирование испытаний по схеме урн - student2.ru Моделирование испытаний по схеме урн - student2.ru , к общему числу возможных элементарных исходов Моделирование испытаний по схеме урн - student2.ru , т.е.

Моделирование испытаний по схеме урн - student2.ru .

Пример: В ящике содержится Моделирование испытаний по схеме урн - student2.ru деталей, среди которых Моделирование испытаний по схеме урн - student2.ru качественных. Найти вероятность того, что наудачу извлеченная деталь является: а) качественной Моделирование испытаний по схеме урн - student2.ru ; б) дефектной Моделирование испытаний по схеме урн - student2.ru .

Решение: Рассматриваемая задача удовлетворяет трем сформулированным условиям симметрии. Тогда, согласно классического определения вероятности, находим:

Моделирование испытаний по схеме урн - student2.ru , Моделирование испытаний по схеме урн - student2.ru .

Очевидно, что Моделирование испытаний по схеме урн - student2.ru .

Число возможных и благоприятных элементарных событий вычисляется с помощью формул комбинаторики. Основные из этих формул выводятся ниже.

Наши рекомендации