Производная параметрически заданной функции
Не напрягаемся, в этом параграфе тоже всё достаточно просто. Можно записать общую формулу параметрически заданной функции, но, для того, чтобы было понятно, я сразу запишу конкретный пример. В параметрической форме функция задается двумя уравнениями: . Частенько уравнения записывают не под фигурными скобками, а последовательно: , .
Переменнаяназывается параметром и может принимать значения от «минус бесконечности» до «плюс бесконечности». Рассмотрим, например, значение и подставим его в оба уравнения: . Или по человечески: «если икс равен четырем, то игрек равно единице». На координатной плоскости можно отметить точку , и эта точка будет соответствовать значению параметра ..
В простейших случаях есть возможность представить функцию в явном виде. Выразим из первого уравнения параметр: – и подставим его во второе уравнение: . В результате получена обыкновенная кубическая функция.
В более «тяжелых» случаях такой фокус не прокатывает. Но это не беда, потому что для нахождения производной параметрической функции существует формула:
Находим производную от «игрека по переменной тэ»:
Все правила дифференцирования и таблица производных справедливы, естественно, и для буквы , таким образом, какой-то новизны в самом процессе нахождения производных нет. Просто мысленно замените в таблице все «иксы» на букву «тэ».
Находим производную от «икса по переменной тэ»:
Теперь только осталось подставить найденные производные в нашу формулу:
Готово. Производная, как и сама функция, тоже зависит от параметра .
Что касается обозначений, то в формуле вместо записи можно было просто записать без подстрочного индекса, поскольку это «обычная» производная «по икс». Но в литературе всегда встречается вариант , поэтому я не буду отклоняться от стандарта.
Пример 6
Найти производную от функции, заданной параметрически
Используем формулу
В данном случае:
Таким образом:
Особенностью нахождения производной параметрической функции является тот факт, что на каждом шаге результат выгодно максимально упрощать. Так, в рассмотренном примере при нахождении я раскрыл скобки под корнем (хотя мог этого и не делать). Велик шанс, что при подстановке и в формулу многие вещи хорошо сократятся. Хотя встречаются, конечно, примеры и с корявыми ответами.
Пример 8
Найти первую и вторую производные от функции, заданной параметрически
Сначала найдем первую производную.
Используем формулу
В данном случае:
Подставляет найденные производные в формулу. В целях упрощений используем тригонометрическую формулу :
Я заметил, что в задаче на нахождение производной параметрической функции довольно часто в целях упрощений приходится использовать тригонометрические формулы. Помните их или держите под рукой, и не пропускайте возможность упростить каждый промежуточный результат и ответы. Зачем? Сейчас нам предстоит взять производную от , и это явно лучше, чем находить производную от . Найдем вторую производную. Используем формулу: .
Посмотрим на нашу формулу. Знаменатель уже найден на предыдущем шаге. Осталось найти числитель – производную от первой производной по переменной «тэ»:
Осталось воспользоваться формулой:
Пример 9
Найти и для функции, заданной параметрически
Пример 10
Найти и для функции, заданной параметрически
Пример 9: Решение: Найдем первую производную.
Используем формулу: . В данном случае:
Найдем вторую производную, используя формулу .
Пример 10: Решение:
Используем формулу: . В данном случае:
Таким образом:
Вторая производная:
28. Касательная и нормаль к линии. --------------------