Решение СЛАУ с помощью обр.матрицы
Дана система из трех уравнений с тремя неизвестными. Установить, что система уравнений имеет единственное решение и найти его с помощью обратной матрицы
.
Решение.
Если определитель системы отличен от нуля, то система имеет единственное решение (теорема Крамера).
Вычислим определитель данной системы :
,
следовательно, система имеет единственное решение.
Данную систему можно записать в матричной форме :
, где , , .
Так как , то для матрицы существует обратная матрица . Умножив матричное уравнение слева на , получим , откуда , или .
Найдем обратную матрицу по формуле
,
где алгебраическое дополнение элемента .
,
.
.
Тогда
.
Ответ : .
18.Система м- линейных ур-ий с п неизвестными(м<п)
Системой m линейных уравнений с n неизвестными называется система вида
где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.
Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.
Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.
Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.
Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:
1. Система может иметь единственное решение.
2. Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
3. И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.
Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.
20.Понятие ф-ии. Способы задания ф-ии
Функция- зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.
Переменная х- независимая переменная или аргумент. Переменная у- зависимая переменная
Значение функции- значение у, соответствующее заданному значению х.
Область определения функции- все значения, которые принимает независимая переменная. Область значений функции (множество значений)- все значения, которыепринимает функция.
Способы задания функции
- Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции.Наиболее употребительным является способ задания функции с помощью формулы у=f(x), где f(x)-некоторое выражение с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.- На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.
№21.Область определения функции.Четность и монотонность.
Область определения функции — это множество допустимых значений аргумента функции. Она обозначается как D(y), когда нужно указать область определения функции y = f(x).
Монотонность: Ф-я у=f(x) назв. Возрастающей на обл.определения D, если для любых х1 Є D, х2Є D и таких, что х2>х1- выполняется соотношение f(x2)>f(x1); Ф-я у=f(x) назв. Убывающей на обл. определения D, если для любых х1 Є D, х2Є D и таких, что х2<х1- выполняется соотношение f(x2)<f(x1);
Четность .ф-я у=f(x) назв. четной если для любых х Є обл.опред-я выполняется соотношение f(-x)=f(x); ф-я у=f(x) назв. нечётной если для любых х Є обл.опред-я выполняется соотношение f(-x)=-f(x).Ф-я которая не является нечетной/четной назв – ф-ей общего вида
№22.Понятие предела. Бесконечно малые величины, их свойства