РАЗДЕЛ 3. Содержательный компонент теоретического материала
РАЗДЕЛ 3. Содержательный компонент теоретического материала
Лекция 1.
Предмет теории вероятностей. Случайные события. Алгебра событий. Относитель-ная частота и вероятность случайного события. Полная группа событий. Классичес-кое определение вероятности. Основные свойства вероятности. Основные формулы комбинаторики.
В различных разделах науки и техники нередко возникают ситуации, когда результат каждого из многих проводимых опытов заранее предугадать невозможно, однако можно исследовать закономерности, возникающие при проведении серии опытов. Нельзя, напри-мер, точно сказать, какая сторона монеты окажется сверху при данном броске: герб или цифра – но при большом количестве бросков число выпадений герба приближается к по-ловине количества бросков; нельзя заранее предсказать результат одного выстрела из дан-ного орудия по данной цели, но при большом числе выстрелов частота попадания прибли-жается к некоторому постоянному числу. Исследование вероятностных закономерностей массовых однородных явлений составляет предмет теории вероятностей.
Основным интуитивным понятием классической теории вероятностей является случайное событие. События, которые могут произойти в результате опыта, можно подразделить на три вида:
а) достоверное событие – событие, которое всегда происходит при проведении опыта;
б) невозможное событие – событие, которое в результате опыта произойти не может;
в) случайное событие – событие, которое может либо произойти, либо не произойти. Например, при броске игральной кости достоверным событием является выпадение числа очков, не превышающего 6, невозможным – выпадение 10 очков, а случайным – выпадение 3 очков.
Алгебра событий.
Определение 1.1. Суммой А+В двух событий А и В называют событие, состоящее в том, что произошло хотя бы одно из событий А и В. Суммой нескольких событий, соответ-ственно, называется событие, заключающееся в том, что произошло хотя бы одно из этих событий.
Пример 1. Два стрелка делают по одному выстрелу по мишени. Если событие А – попадание первого стрелка, а событие В – второго, то сумма А+В – это хотя бы одно попадание при двух выстрелах.
Пример 2. Если при броске игральной кости событием Аi назвать выпадение i очков, то выпадение нечетного числа очков является суммой событий А1+А2+А3.
Назовем все возможные результаты данного опыта его исходами и предположим, что множество этих исходов, при которых происходит событие А (исходов, благоприятных событию А), можно представить в виде некоторой области на плоскости. Тогда множество исходов, при которых произойдет событие А+В, является объединением множеств исходов, благоприятных событиям А или В (рис. 1).
А В А + В
Рис.1.
Определение 1.2. Произведением АВсобытий А и В называется событие, состоящее в том, что произошло и событие А, и событие В. Аналогично произведением нескольких событий называется событие, заключающееся в том, что произошли все эти события.
Пример 3. В примере 1 ( два выстрела по мишени) событием АВ будет попадание обоих стрелков.
Пример 4. Если событие А состоит в том, что из колоды карт извлечена карта пиковой масти, а событие В – в том, что из колоды вынута дама, то событием АВ будет извлечение из колоды дамы пик.
Геометрической иллюстрацией множества исходов опыта, благоприятных появлению произведения событий А и В, является пересечение областей, соответствующих исходам, благоприятным А и В.
А В АВ
Рис.2.
Определение 1.3. Разностью А\B событий А и В называется событие, состоящее в том, что А произошло, а В – нет.
Пример 5. Вернемся к примеру 1, где А\ В – попадание первого стрелка при промахе второго.
Пример 6. В примере 4 А\В – извлечение из колоды любой карты пиковой масти, кроме дамы. Наоборот, В \А – извлечение дамы любой масти, кроме пик.
А В А - В
Рис.3.
Введем еще несколько категорий событий.
Определение 1.4. События А и В называются совместными, если они могут произойти оба в результате одного опыта. В противном случае (то есть если они не могут произойти одновременно) события называются несовместными.
Примеры: совместными событиями являются попадания двух стрелков в примере 1 и появление карты пиковой масти и дамы в примере 4; несовместными – события А1 – А6 в примере 2.
Замечание 1. Если изобразить графически области исходов опыта, благоприятных несовместным событиям, то они не будут иметь общих точек.
Замечание 2. Из определения несовместных событий следует, что их произведение является невозможным событием.
Определение 1.5. Говорят, что события А1, А2,…,Ап образуют полную группу, если в результате опыта обязательно произойдет хотя бы одно из событий этой группы.
Замечание. В частности, если события, образующие полную группу, попарно несовмест-ны, то в результате опыта произойдет одно и только одно из них. Такие события называют элементарными событиями.
Пример. В примере 2 события А1 – А6 (выпадение одного, двух,…, шести очков при одном броске игральной кости) образуют полную группу несовместных событий.
Определение 1.6. События называются равновозможными, если нет оснований считать, что одно из них является более возможным, чем другое.
Примеры: выпадение любого числа очков при броске игральной кости, появление любой карты при случайном извлечении из колоды, выпадение герба или цифры при броске монеты и т.п.
Лекция 2.
Геометрические вероятности. Теорема сложения вероятностей. Противоположные события. Условные вероятности. Теорема умножения вероятностей. Независимые события. Вероятность появления хотя бы одного события.
Одним из недостатков классического определения вероятности является то, что оно неприменимо к испытаниям с бесконечным количеством исходов. В таких случаях можно воспользоваться понятием геометрической вероятности.
Пусть на отрезок L наудачу брошена точка. Это означает, что точка обязательно попадет на отрезок L и с равной возможностью может совпасть с любой точкой этого отрезка. При этом вероятность попадания точки на любую часть отрезка L не зависит от расположения этой части на отрезке и пропорциональна его длине. Тогда вероятность того, что брошен-ная точка попадет на отрезок l, являющийся частью отрезка L, вычисляется по формуле:
(2.1)
где l – длина отрезка l, а L – длина отрезка L.
Можно дать аналогичную постановку задачи для точки, брошенной на плоскую область S и вероятности того, что она попадет на часть этой области s:
(2.1`)
где s – площадь части области, а S – площадь всей области.
В трехмерном случае вероятность того, что точка, случайным образом расположенная в теле V, попадет в его часть v, задается формулой:
(2.1``)
где v – объем части тела, а V – объем всего тела.
Пример 1. Найти вероятность того, что точка, наудачу брошенная в круг, не попадет в правильный шестиугольник, вписанный в него.
Решение. Пусть радиус круга равен R , тогда сторона шестиугольника тоже равна R. При этом площадь круга а площадь шестиугольника Следовательно,
Пример 2. На отрезок АВ случайным образом брошены три точки: С, D и М. Найти вероятность того, что из отрезков АС, АD и АМ можно построить треугольник.
Решение. Обозначим длины отрезков АС, АD и АМ через x, y и z и рассмотрим в качестве возможных исходов множество точек трехмерного пространства с координатами (х, у, z). Если принять длину отрезка равной 1, то эти множество возможных исходов представляет собой куб с ребром, равным 1. Тогда множество благоприятных исходов состоит из точек, для координат которых выполнены неравенства треугольника: x + y > z, x + z > y, y + z > x. Это часть куба, отрезанная от него плоскостями x + y = z, x + z = y, y + z = x
х Рис.1.
(одна из них, плоскость x + y = z, проведена на рис.1). Каждая такая плоскость отделяет от куба пирамиду, объем которой равен . Следовательно, объем оставшейся части
. Тогда
Лекция 3.
Лекция 4.
Случайные величины и их виды. Закон распределения и функция распределения дискретной случайной величины. Биномиальное распределение и распределение Пуассона. Операции над д.с.в. Числовые характеристики д.с.в. и их свойства.
Наряду с понятием случайного события в теории вероятности используется и более удобное понятие случайной величины.
Определение 4.1. Случайной величиной называется величина, принимающая в результате опыта одно из своих возможных значений, причем заранее неизвестно, какое именно.
Будем обозначать случайные величины заглавными буквами латинского алфавита (Х, Y,Z,…), а их возможные значения – соответствующими малыми буквами (xi, yi,…).
Примеры: число очков, выпавших при броске игральной кости; число появлений герба при 10 бросках монеты; число выстрелов до первого попадания в цель; расстояние от центра мишени до пробоины при попадании.
Можно заметить, что множество возможных значений для перечисленных случайных величин имеет разный вид: для первых двух величин оно конечно ( соответственно 6 и 11 значений), для третьей величины множество значений бесконечно и представляет собой множество натуральных чисел, а для четвертой – все точки отрезка, длина которого равна радиусу мишени. Таким образом, для первых трех величин множество значений из отдельных (дискретных), изолированных друг от друга значений, а для четвертой оно представляет собой непрерывную область. По этому показателю случайные величины подразделяются на две группы: дискретные и непрерывные.
Определение 4.2. Случайная величина называется дискретной, если она принимает отдельные, изолированные возможные значения с определенными вероятностями.
Определение 4.3. Случайная величина называется непрерывной, если множество ее возможных значений целиком заполняет некоторый конечный или бесконечный промежуток.
Функция распределения.
Определение 4.4. Функцией распределения F(x)случайной величины Х называется вероятность того, что случайная величина примет значение, меньшее х:
F (x) = p (X < x). (4.1)
Свойства функции распределения.
1) 0 ≤ F(x) ≤ 1. Действительно, так как функция распределения представляет собой вероятность, она может принимать только те значения, которые принимает вероятность.
2) Функция распределения является неубывающей функцией, то есть F(x2) ≥ F(x1) при х2 > x1. Это следует из того, что F(x2) = p(X < x2) = p(X < x1) + p(x1 ≤ X < x2) ≥ F(x1).
3) В частности, если все возможные значения Х лежат на интервале [a, b], то F(x) = 0 при х ≤ а и F(x) = 1 при х ≥ b. Действительно, X < a – событие невозможное, а X < b – достоверное.
4) Вероятность того, что случайная величина примет значение из интервала [a, b], равна разности значений функции распределения на концах интервала:
p ( a < X < b ) = F(b) – F(a).
Справедливость этого утверждения следует из определения функции распределения (см. свойство 2).
Для дискретной случайной величины значение F(x) в каждой точке представляет собой сумму вероятностей тех ее возможных значений, которые меньше аргумента функции.
Пример. Найдем F(x) для предыдущего примера:
Соответственно график функции распределения имеет ступенчатый вид:
Биномиальное распределение.
Вернемся к схеме независимых испытаний и найдем закон распределения случайной величины Х – числа появлений события А в серии из п испытаний. Возможные значения А: 0, 1, …, п. Соответствующие им вероятности можно вычислить по формуле Бернулли:
(4.2)
( p – вероятность появления А в каждом испытании).
Такой закон распределения называют биномиальным, поскольку правую часть равенства (4.2) можно рассматривать как общий член разложения бинома Ньютона:
Пример. Составим ряд распределения случайной величины Х – числа попаданий при 5 выстрелах, если вероятность попадания при одном выстреле равна 0,8.
р(Х=0) = 1·(0,2)5 = 0,00032; р(Х=1) = 5·0,8·(0,2)4 = 0,0064; р(Х=2) = 10·(0,8)2·(0,2)3 = 0,0512; р(Х=3) = 10·(0,8)3·(0,2)2 = 0,2048; р(Х=4) = 5·(0,8)4·0,2 = 0,4096; р(Х=5) = 1·(0,8)5 = 0,32768. Таким образом, ряд распределения имеет вид:
х | ||||||
р | 0.00032 | 0.0064 | 0.0512 | 0.2048 | 0.4096 | 0.32728 |
Распределение Пуассона.
Рассмотрим дискретную случайную величину Х, принимающую только целые неотрицательные значения (0, 1, 2,…, т,…), последовательность которых не ограничена. Такая случайная величина называется распределенной по закону Пуассона, если вероятность того, что она примет значение т, выражается формулой:
, (4.3)
где а – некоторая положительная величина, называемая параметром закона Пуассона.
Покажем, что сумма всех вероятностей равна 1:
(использовано разложение в ряд Тейлора функции ех).
Рассмотрим типичную задачу, приводящую к распределению Пуассона. Пусть на оси абсцисс случайным образом распределяются точки, причем их распределение удовлет-воряет следующим условиям:
1) вероятность попадания некоторого количества точек на отрезок длины l зависит только от длины отрезка и не зависит от его расположения на оси ( то есть точки распределены с одинаковой средней плотностью);
2) точки распределяются независимо друг от друга ( вероятность попадания какого-либо числа точек на данный отрезок не зависит от количества точек, попавший на любой другой отрезок);
3) практическая невозможность совпадения двух или более точек.
Тогда случайная величина Х – число точек, попадающих на отрезок длины l – распре-делена по закону Пуассона, где а – среднее число точек, приходящееся на отрезок длины l.
Замечание. В лекции 3 говорилось о том, что формула Пуассона выражает биномиальное распределение при большом числе опытов и малой вероятности события. Поэтому закон Пуассона часто называют законом редких явлений.
Лекция 5.
Лекция 6.
Нормальный закон распределения вероятностей. Нормальная кривая. Функция Лапласа. Вычисление вероятности попадания в заданный интервал нормальной случайной величины. Правило трех сигм. Закон больших чисел. Неравенство Чебышёва. Теоремы Чебышёва и Бернулли.
Определение 6.1. Непрерывная случайная величина называется распределенной по нормальному закону, если ее плотность распределения имеет вид:
(6.1)
Замечание. Таким образом, нормальное распределение определяется двумя параметрами: а и σ.
График плотности нормального распределения называют нормальной кривой (кривой Гаусса). Выясним, какой вид имеет эта кривая, для чего исследуем функцию (6.1).
1) Область определения этой функции: (-∞, +∞).
2) f(x) > 0 при любом х (следовательно, весь график расположен выше оси Ох).
3) то есть ось Ох служит горизонтальной асимптотой графика при
4) при х = а; при x > a, при x < a. Следовательно, - точка максимума.
5) F(x – a) = f(a – x), то есть график симметричен относительно прямой х = а.
6) при , то есть точки являются точками перегиба.
Примерный вид кривой Гаусса изображен на рис.1.
х
Рис.1.
Найдем вид функции распределения для нормального закона:
(6.2)
Перед нами так называемый «неберущийся» интеграл, который невозможно выразить через элементарные функции. Поэтому для вычисления значений F(x) приходится пользоваться таблицами. Они составлены для случая, когда а = 0, а σ = 1.
Определение 6.2. Нормальное распределение с параметрами а = 0, σ = 1 называется нормированным, а его функция распределения
- (6.3)
- функцией Лапласа.
Замечание. Функцию распределения для произвольных параметров можно выразить через функцию Лапласа, если сделать замену: , тогда .
Найдем вероятность попадания нормально распределенной случайной величины на заданный интервал:
(6.4)
Пример. Случайная величина Х имеет нормальное распределение с параметрами а = 3, σ = 2. Найти вероятность того, что она примет значение из интервала (4, 8).
Решение.
Правило «трех сигм».
Найдем вероятность того, что нормально распределенная случайная величина примет значение из интервала (а - 3σ, а + 3σ):
Следовательно, вероятность того, что значение случайной величины окажется вне этого интервала, равна 0,0027, то есть составляет 0,27% и может считаться пренебрежимо малой. Таким образом, на практике можно считать, что все возможные значения нормально распределенной случайной величины лежат в интервале (а - 3σ, а + 3σ). Полученный результат позволяет сформулировать правило «трех сигм»: если случайная величина распределена нормально, то модуль ее отклонения от х = а не превосходит 3σ.
Изучение статистических закономерностей позволило установить, что при некоторых условиях суммарное поведение большого количества случайных величин почти утрачи-вает случайный характер и становится закономерным (иначе говоря, случайные отклоне-ния от некоторого среднего поведения взаимно погашаются). В частности, если влияние на сумму отдельных слагаемых является равномерно малым, закон распределения суммы приближается к нормальному. Математическая формулировка этого утверждения дается в группе теорем, называемой законом больших чисел.
Неравенство Чебышева.
Неравенство Чебышева, используемое для доказательства дальнейших теорем, справед-ливо как для непрерывных, так и для дискретных случайных величин. Докажем его для дискретных случайных величин.
Теорема 6.1. (неравенство Чебышева). p( | X – M(X)| < ε ) ≥ D(X) / ε². (6.5.)
Доказательство. Пусть Х задается рядом распределения
Х | х1 | х2 | … | хп |
р | р1 | р2 | … | рп |
Так как события |X – M(X)| < ε и |X – M(X)| ≥ ε противоположны, то р ( |X – M(X)| < ε ) + + р ( |X – M(X)| ≥ ε ) = 1, следовательно, р ( |X – M(X)| < ε ) = 1 - р ( |X – M(X)| ≥ ε ). Найдем р ( |X – M(X)| ≥ ε ).
D(X) = (x1 – M(X))²p1 + (x2 – M(X))²p2 + … + (xn – M(X))²pn . Исключим из этой суммы те слагаемые, для которых |X – M(X)| < ε. При этом сумма может только уменьшиться, так как все входящие в нее слагаемые неотрицательны. Для определенности будем считать, что отброшены первые k слагаемых. Тогда
D(X) ≥ (xk+1 – M(X))²pk+1 + (xk+2 – M(X))²pk+2 + … + (xn – M(X))²pn ≥ ε² (pk+1 + pk+2 + … + pn).
Отметим, что pk+1 + pk+2 + … + pn есть вероятность того, что |X – M(X)| ≥ ε, так как это сумма вероятностей всех возможных значений Х, для которых это неравенство справедливо. Следовательно, D(X) ≥ ε² р(|X – M(X)| ≥ ε), или р (|X – M(X)| ≥ ε) ≤ D(X) / ε². Тогда вероятность противоположного события p( | X – M(X)| < ε ) ≥ D(X) / ε², что и требо-валось доказать.
Теорема Бернулли.
Теорема 6.3 (теорема Бернулли). Если в каждом из п независимых опытов вероятность р появления события А постоянна, то при достаточно большом числе испытаний вероят-ность того, что модуль отклонения относительной частоты появлений А в п опытах от р будет сколь угодно малым, как угодно близка к 1:
(6.6.)
Доказательство. Введем случайные величины Х1, Х2, …, Хп, где Xi – число появлений А в i-м опыте. При этом Xi могут принимать только два значения: 1(с вероятностью р) и 0 (с вероятностью q = 1 – p). Кроме того, рассматриваемые случайные величины попарно независимы и их дисперсии равномерно ограничены (так как D(Xi) = pq, p + q = 1, откуда pq ≤ ¼ ). Следовательно, к ним можно применить теорему Чебышева при Mi = p:
.
Но , так как Xi принимает значение, равное 1, при появлении А в данном опыте, и значение, равное 0, если А не произошло. Таким образом,
что и требовалось доказать.
Замечание. Из теоремы Бернулли не следует, что Речь идет лишь о вероятно-сти того, что разность относительной частоты и вероятности по модулю может стать сколь угодно малой. Разница заключается в следующем: при обычной сходимости, рассматриваемой в математическом анализе, для всех п, начиная с некоторого значения, неравенство выполняется всегда; в нашем случае могут найтись такие значения п, при которых это неравенство неверно. Этот вид сходимости называют сходимостью по вероятности.
Лекция 7.
Системы случайных величин. Закон распределения вероятностей дискретной двумерной случайной величины. Функция распределения и плотность распределения двумерной случайной величины, их свойства. Вероятность попадания случайной точки в произвольную область. Отыскание плотностей вероятности составляющих двумерной случайной величины
Наряду с одномерными случайными величинами, возможные значения которых определяют-ся одним числом, теория вероятностей рассматривает и многомерные случайные величины. Каждое возможное значение такой величины представляет собой упорядоченный набор нескольких чисел. Геометрической иллюстрацией этого понятия служат точки п-мерного пространства, каждая координата которых является случайной величиной (дискретной или непрерывной), или п-мерные векторы. Поэтому многомерные случайные величины называют еще случайными векторами.
Лекция 8.
Основные понятия математической статистики. Генеральная совокупность и выборка. Дискретный вариационный ряд, статистическое распределение выборки. Интервальный вариационный ряд. Полигоны частот и гистограммы. Выборочная функция распределения и её свойства. Числовые характеристики статистического распределения: выборочное среднее, выборочная дисперсия, выборочное среднее квадратическое отклонение, мода и медиана.
Математическая статистика занимается установлением закономерностей, которым подчинены массовые случайные явления, на основе обработки статистических данных, полученных в результате наблюдений. Двумя основными задачами математической статистики являются:
- определение способов сбора и группировки этих статистических данных;
- разработка методов анализа полученных данных в зависимости от целей исследования, к которым относятся:
а) оценка неизвестной вероятности события; оценка неизвестной функции распределения; оценка параметров распределения, вид которого известен; оценка зависимости от других случайных величин и т.д.;
б) проверка статистических гипотез о виде неизвестного распределения или о значениях параметров известного распределения.
Для решения этих задач необходимо выбрать из большой совокупности однородных объектов ограниченное количество объектов, по результатам изучения которых можно сделать прогноз относительно исследуемого признака этих объектов.
Определим основные понятия математической статистики.
Генеральная совокупность– все множество имеющихся объектов.
Выборка – набор объектов, случайно отобранных из генеральной совокупности.
Объем генеральной совокупности N и объем выборки n – число объектов в рассматривае-мой совокупности.
Виды выборки:
Повторная – каждый отобранный объект перед выбором следующего возвращается в генеральную совокупность;
Бесповторная – отобранный объект в генеральную совокупность не возвращается.
Замечание. Для того, чтобы по исследованию выборки можно было сделать выводы о поведе-нии интересующего нас признака генеральной совокупности, нужно, чтобы выборка правиль-но представляла пропорции генеральной совокупности, то есть была репрезентативной(представительной). Учитывая закон больших чисел, можно утверждать, что это условие выполняется, если каждый объект выбран случайно, причем для любого объекта вероятность попасть в выборку одинакова.
Первичная обработка результатов.
Пусть интересующая нас случайная величина Х принимает в выборке значение х1 п1 раз, х2 – п2 раз, …, хк – пк раз, причем где п – объем выборки. Тогда наблюдаемые значения случайной величины х1, х2,…, хк называют вариантами, а п1, п2,…, пк – частотами. Если разделить каждую частоту на объем выборки, то получим относительные частоты Последовательность вариант, записанных в порядке возрастания, называют дискретным вариационным рядом, а перечень вариант и соответствующих им частот или относительных частот – статистическим рядом или статистическим распределением выборки:
xi | x1 | x2 | … | xk |
ni | n1 | n2 | … | nk |
wi | w1 | w2 | … | wk |
Пример.
При проведении 20 серий из 10 бросков игральной кости число выпадений шести очков оказалось равным 1,1,4,0,1,2,1,2,2,0,5,3,3,1,0,2,2,3,4,1.Составим вариационный ряд: 0,1,2,3,4,5. Статистический ряд для абсолютных и относительных частот имеет вид:
xi | ||||||
ni | ||||||
wi | 0,15 | 0,3 | 0,25 | 0,15 | 0,1 | 0,05 |
Если исследуется некоторый непрерывный признак, то вариационный ряд может состоять из очень большого количества чисел. В этом случае удобнее использовать группированную выборку. Для ее получения интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько равных частичных интервалов длиной h, а затем находят для каждого частичного интервала ni – сумму частот вариант, попавших в i-й интервал. Составленная по этим результатам таблица называется группированным статистическим рядом или интервальным вариационным рядом:
Номера интервалов | … | k | ||
Границы интервалов | (a, a + h) | (a + h, a + 2h) | … | (b – h, b) |
Сумма частот вариант, попав- ших в интервал | n1 | n2 | … | nk |
Лекция 9.
Точечные статистические оценки и их виды. Оценки основных параметров генеральной совокупности с помощью выборочных характеристик. Интервальное оценивание неизвестных параметров. Точность оценки, доверительная вероятность (надежность), доверительный интервал. Построение доверительных интервалов для оценки математического ожидания нормального распределения при известной и при неизвестной дисперсии. Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.
Одна из задач математической статистики: по имеющейся выборке оценить значения числовых характеристик исследуемой случайной величины или признака.
Получив статистические оценки параметров распределения (выборочное среднее, выбороч-ную дисперсию и т.д.), нужно убедиться, что они в достаточной степени служат приближе-нием соответствующих характеристик генеральной совокупности. Определим требования, которые должны при этом выполняться.
Пусть Θ* - статистическая оценка неизвестного параметра Θ теоретического распределения. Извлечем из генеральной совокупности несколько выборок одного и того же объема п и вычислим для каждой из них оценку параметра Θ: Тогда оценку Θ* можно рассматривать как случайную величину, принимающую возможные значения Если математическое ожидание Θ* не равно оцениваемому параметру, мы будем получать при вычислении оценок систематические ошибки одного знака (с избытком, если М( Θ*) >Θ, и с недостатком, если М(Θ*) < Θ). Следовательно, необходимым условием отсутствия систе-матических ошибок является требование М(Θ*) = Θ.
Определение 9.1. Статистическая оценка Θ* называется несмещенной, если ее математичес-кое ожидание равно оцениваемому параметруΘ при любом объеме выборки:
М(Θ*) = Θ. (9.1.)
Смещенной называют оценку, математическое ожидание которой не равно оцениваемому параметру.
Однако несмещенность не является достаточным условием хорошего приближения к истин-ному значению оцениваемого параметра. Если при этом возможные значения Θ* могут значительно отклоняться от среднего значения, то есть дисперсия Θ* велика, то значение, найденное по данным одной выборки, может значительно отличаться от оцениваемого параметра. Следовательно, требуется наложить ограничения на дисперсию.
Определение 9.2. Статистическая оценка называется эффективной, если она при заданном объеме выборки п имеет наименьшую возможную дисперсию.
При рассмотрении выборок большого объема к статистическим оценкам предъявляется еще и требование состоятельности.
Определение 9.3. Состоятельной называется статистическая оценка, которая при п→∞ стре-мится по вероятности к оцениваемому параметру (если эта оценка несмещенная, то она будет состоятельной, если при п→∞ ее дисперсия стремится к 0).
Убедимся, что представляет собой несмещенную оценку математического ожидания М(Х).
Будем рассматривать как случайную величину, а х1, х2,…, хп, то есть значения исследуемой случайной величины, составляющие выборку,– как независимые, одинаково распределенные случайные величины Х1, Х2,…, Хп, имеющие математическое ожидание а. Из свойств математического ожидания следует, что
Но, поскольку каждая из величин Х1, Х2,…, Хп имеет такое же распределение, что и генеральная совокупность, а = М(Х), то есть М( ) = М(Х), что и требовалось доказать. Выборочное среднее является не только несмещенной, но и состоятельной оценкой математического ожидания. Если предположить, что Х1, Х2,…, Хп имеют ограниченные дисперсии, то из теоремы Чебышева следует, что их среднее арифметическое, то есть , при увеличении п стремится по вероятности к математическому ожиданию а каждой их величин, то есть к М(Х). Следовательно, выборочное среднее есть состоятельная оценка математического ожидания.
В отличие от выборочного среднего, выборочная дисперсия является смещенной оценкой дисперсии генеральной совокупности. Можно доказать, что
, (9.2.)
где DГ – истинное значение дисперсии генеральной совокупности. Можно предложить другую оценку дисперсии – исправленную дисперсию s², вычисляемую по формуле
. (9.3)
Такая оценка будет являться несмещенной. Ей соответствует исправленное среднее квадратическое отклонение