Вопрос 15 Частные производные. Дифференцируемость ф-ций неск. переменных, осн. теоремы, необ. и достат. условие дифф-ти, дифф-ие сложной ф-ции, инвар-ть формы 1-ого диф-ла.
Функция называется дифференцируемой в данной точке, если ее полное приращение в этой точке может быть представлено в виде: , где А1, А2, …, Аm – некоторые не зависящие от ∆х1, ∆х2, …, ∆хm числа, а α1, α2, …, αm – бесконечно малые при функции, равные 0 при ∆х1=∆х2=…∆хm=0.
Частная производная функции z=f(x,y) по х – предел отношения частного приращения функции по х к приращению Δх при Δх→0, если он существует и конечен:
Частная производная функции z=f(x,y) по y- – предел отношения частного приращения функции по y к приращению Δy при Δy→0, если он существует и конечен:
Полный дифференциал функции z=f(x,y) - главная линейная относительно и ∆у часть приращения функции ∆z в точке (х,у): dz= fx(x,y)dx+ fy (x,y)dy
Если функция f(x,y) определена в некоторой области D, то её частные производные f ’x(x,y), f ’y(x,y), тоже будут определены в той же области или её части. Будем называть эти производные производными I-ого порядка. Производные этих функций производными II-ого порядка.
Необх. и дост. условие дифференцируемости
Напомним, что функция одной переменной называется дифференцируемой в точке , если приращение функции представимо в виде
,
где ― некоторое действительное число, зависящее от , а -бесконечно малая функция более высокого порядка малости, чем , при .
Необходимым и достаточным условием дифференцируемости функции в точке является существование производной
.
Выясним, как переносятся условия дифференцируемости на случай функции двух переменных.
Определение.Функция называется дифференцируемой в точке , если ее полное приращение в этой точке можно представить в виде
,(1)
Дифференцирование сложной ф-ции
Пусть задана функция двух переменных и пусть переменные и сами являются непрерывными функциями независимых переменных и : , . (*)
Таким образом,
,
т.е. является сложной функцией переменных и . Выясним, как найти ее частные производные по аргументам и , не делая непосредственной подстановки. При этом будем предполагать, что все рассматриваемые функции имеют непрерывные частные производные по всем своим аргументам. Сначала найдем производную . Для этого дадим аргументу приращение , сохраняя значение неизменным. Тогда в силу уравнений (*) получат приращения и .
Но если и получают приращения и , то функция получит приращение , определяемое формулой:
.
Разделим обе части последнего равенства на :
.
Если , то и (в силу непрерывности функций и ). Но тогда и тоже стремятся к нулю. Переходя к пределу при , получим
, , ,
и, следовательно,
. (1)
Аналогично находим производную по переменной :
. (2)
Вывод. Частная производная сложной функции равна сумме произведений частных производных заданной функции по промежуточным аргументам ( и ) на частные производные этих аргументов ( и ) по соответствующей независимой переменной ( и ), где и — некоторые постоянные, зависящие от и ; и — функции от и , стремящиеся к нулю при и , то есть , .
Равенство (1) выражает условие дифференцируемости функции в точке .
Определение.Функцию , дифференцируемую в каждой точке некоторого множества, называют дифференцируемой на этом множестве.
Инвариантность формы 1-ого диф-ла
Если xi(t) непрерывно диф-ма на t= t0(t01+ t02 +…+ t0m), а y=f(x); x=(x1,x2,…xn) непрерыв.. диф-ма в т. x0=(x01,x02,…x0n), xoi (to), то ф-ция y=f(x(t)) диф-ма в точке tо и справедливо равенство