Некоторые приложения степенных рядов
Приближенное вычисление значений функции
Пусть требуется вычислить значение функции f(x) при с заданной точностью
Если функцию f(x) в интервале ( -R;R) можно разложить в степенной ряд
и , то точное значение равно сумме этого ряда при , т.е.
а приближенное – частичной сумме , т.е.
Точность этого равенства увеличивается с ростом n . Абсолютная погрешность этого приближенного равенства равна модулю остатка ряда, т.е. ,
где
Таким образом, ошибку можно найти, оценив остаток ряда.
Для рядов лейбницевского типа
В остальных случаях (ряд знакопеременный или знакоположительный) составляют ряд из модулей членов ряда и для него стараются найти положительный ряд с большими членами, который легко бы суммировался. И в качестве оценки берут величину остатка этого нового ряда.
Приближенное вычисление определенных интегралов
Бесконечные ряды применяются также для приближенного вычисления неопределенных и определенных интегралов в случаях, когда первообразная не выражается в конечном итоге через элементарные функции либо нахождение первообразной сложно.
Пусть требуется вычислить с точностью до . Если подынтегральную функцию f(x) можно разложить в ряд по степеням x и интервал сходимости ( -R;R) включит в себя отрезок [a;b], то для вычисления заданного интеграла можно воспользоваться свойством почленного интегрирования этого ряда. Ошибку вычислений определяют так же, как и при вычислении значений функций.
Приближенное решение дифференциальных уравнений
Если решение дифференциального уравнения не выражается через элементарные функции в конечном виде или способ его решения слишком сложен, то для приближенного решения уравнения можно воспользоваться рядом Тейлора.
Числовые ряды
Основные понятия
Числовым рядомназывается выражение вида
где – действительные или комплексные числа, называемые членами ряда, - общим членомряда.
Ряд считается заданным, если известен общий член ряда , выраженный как функция его номера n : .
Сумма первых n членов ряда называется n -й частичной суммойряда и обозначается через , т.е.
Если существует конечный предел последовательности частичных сумм ряда , то этот предел называют суммой рядаи говорят, что ряд сходится. Записывают:
Если не существует или = , то ряд называют расходящимся. Такой ряд суммы не имеет.
Рассмотрим некоторые важные свойства рядов:
Свойство 1 . Если ряд сходится и его сумма равна S , то ряд
где с – произвольное число, также сходится и его сумма равна cS . Если же ряд расходится и , то и ряд расходится.
Обозначим n -ю частичную сумму ряда через . Тогда
Следовательно,
,
т.е. ряд сходится и имеет сумму cS .
Покажем теперь, что если ряд расходится, , то и ряд расходится. Допустим противное: ряд сходится и имеет сумму .
Тогда
Отсюда получаем:
т.е. ряд сходится, что противоречит условию о расходимости ряда.
Свойство 2. Если сходится ряд и сходится ряд
А их суммы равны и соответственно, то сходятся и ряды
,
причем сумма каждого равна соответственно .
Обозначим n -е частичные суммы рядов , и через , и соответственно. Тогда
т.е. каждый из рядов сходится, и сумма его равна соответственно.
Из свойства 2 вытекает, что сумма (разность) сходящегося и расходящегося рядов есть расходящийся ряд.
Свойство 3 . Если к ряду прибавить (или отбросить) конечное число членов, то полученный ряд и ряд сходятся или расходятся одновременно.
Обозначим через S сумму отброшенных членов, через k – наибольший из номеров этих членов. Чтобы не менять нумерацию оставшихся членов ряда, будем считать, что на месте отброшенных членов поставили нули. Тогда при n>k будет выполняться равенство , где – это n -я частичная сумма ряда, полученного из ряда путем отбрасывания конечного числа членов. Поэтому
+ . Отсюда следует, что пределы в левой и правой частях одновременно существуют или не существуют, т.е. ряд сходится (расходится) тогда и только тогда, когда сходятся (расходятся) ряды без конечного числа его членов.
Аналогично рассуждаем в случае приписывания к ряду конечного числа членов.
Ряд
=
называется n -м остатком ряда . Он получается из ряда отбрасыванием n первых его членов. Ряд получается из остатка добавлением конечного числа членов. Поэтому, согласно свойству 3, ряд и его остаток =
одновременно сходятся или расходятся.
Из свойства 3 также следует, что если ряд сходится, то его остаток стремится к нулю при , т.е.