Миноры и алгебраические дополнения.
Определение. Если в определителе n-го порядка выбрать произвольно pстрок и pстолбцов (p < n), то элементы, находящиеся на пересечении этих строк и столбцов, образуют матрицу порядка .
Определитель этой матрицы называется минором исходного определителя. Например, рассмотрим определитель :
Из строк и столбцов с чётными номерами построим матрицу:
Определитель
называется минором определителя . Получили минор второго порядка. Ясно, что из
можно построить различные миноры первого, второго и третьего порядка.
Если взять элемент и вычеркнуть в определителе строку и столбец, на пересечении которых он стоит, то получим минор, называемый минором элемента , который обозначим через :
.
Если минор умножить на , где 3 + 2 – сумма номеров строки и столбца, на пересечении которых стоит элемент то полученное произведение называется алгебраическим дополнением элемента и обозначается ,
т.е.
Вообще, минор элемента будем обозначать , а алгебраическое дополнение ,
причём
(4)
Для примера вычислим алгебраические дополнения элементов и определителя третьего порядка :
По формуле (4) получим
Для вычисления определителя n-го порядка полезно знать следующую теорему: определитель равен сумме произведений элементов какой-либо строки на их алгебраические дополнения, т.е.
(i = 1, 2, ..., n)
№15
Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛА́У) в линейной алгебре — это система уравнений вида
(1) |
Система линейных уравнений от трёх переменных определяет наборплоскостей. Точка пересечения является решением.
Здесь — количество уравнений, а — количество неизвестных. x1, x2, …, xn — неизвестные, которые надо определить. a11,a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными[1]. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[2].
Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.
Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.
Решение системы (1) — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все её уравнения в тождества.
Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.
Совместная система вида (1) может иметь одно или более решений.
Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:
c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2). |
Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называетсянеопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой.
Матричная форма
Система линейных уравнений может быть представлена в матричной форме как:
или:
.
Здесь — это матрица системы, — столбец неизвестных, а — столбец свободных членов. Если к матрице приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.