Второй замечательный предел, примеры нахождения, задачи и подробные решения
Второй замечательный предел имеет вид:
или в другой записи
В случае второго замечательного предела имеем дело с неопределенностью вида единица в степени бесконечность .
Разберем несколько примеров нахождения предела по второму замечательному пределу сподробным оприсанием решения.
Пример.
Вычислить предел
Решение.
Подставляем бесконечность:
Пришли к неопределенности единица в степени бесконечность. Смотрим в таблицу неопределенностей для определения метода решения и останавливаемся на применении второго замечательного предела.
Сделаем замену переменных. Пусть
Если , то
Исходный предел после замены примет вид:
Ответ:
Пример.
Вычислить предел
Решение.
Подставляем бесконечность:
Пришли к неопределенности единица в степени бесконечность, которая указывает на применение второго замечательного предела. Выделим целую часть в основании показательно степенной функции:
Тогда предел запишется в виде:
Сделаем замену переменных. Пусть
Если , то
Исходный предел после замены примет вид:
В преобразованиях были использованы свойства степени и свойства пределов.
Ответ:
Пример.
Вычислить предел
Решение.
Преобразуем функцию, чтобы применить второй замечательный предел:
Сейчас домножим показатель на и разделим на это же выражение, затем используем свойства степени:
Так как показатели степени числителя и знаменателя дроби одинаковые (они равны 6), то предел этой дроби на бесконечности равен отношению коэффициентов при старших степенях (см. непосредственное вычисление пределов):
Если произвести замену , то получим второй замечательный предел в чистом виде, следовательно,
Ответ:
39.
Пусть и – бесконечно малые функции при . Предел отношения этих величин может принимать любые значения – в зависимости от быстроты убывания одной величины относительно другой. Для сопоставления скоростей убывания этих величин при стремлении x точке a можно использовать предел отношения Если этот предел представляет собой конечное ненулевое число, то и называются бесконечно малыми одного и того же порядка. Особый интерес представляет частный случай, когда λ = 1. Тогда говорят, что и являются эквивалентными бесконечно малыми при и записывают это утверждение в виде Если λ = 0, то говорят, что является бесконечно малой более высокого порядка по сравнению с при а функция имеет меньший порядок малости. Термин “порядок малости” допускает уточнение, если и представляют собой бесконечно малые одного и того же порядка. В этом случае говорят, что является бесконечно малой n-го порядка по сравнению с . Например, функция является бесконечно малой 4-го порядка по сравнению с при x → 0. Если λ = ∞, то бесконечно малые и как бы меняются своими ролями. В этом случае функция является бесконечно малой более высокого порядка по сравнению с при . Сформулируем некоторые полезные свойства эквивалентных бесконечно малых.
|
40.