Размерность линейного пространства

Определение. Число n называется размерностью линейного пространства V, а само пространство V называется n-мерным, если в V существует линейно независимая система из n векторов, а любая система из (n + 1)-го вектора линейно зависима. Размерность пространства Размерность линейного пространства - student2.ru по определению считается равной нулю.

Следствие. В n-мерном пространстве любая система из m векторов при m > n линейно зависима.

Размерность линейного пространства V сокращенно обозначается Размерность линейного пространства - student2.ru . Если Размерность линейного пространства - student2.ru , то пространство будем обозначать Размерность линейного пространства - student2.ru . Линейные n-мерные пространства называются конечномерными.

Определение. Линейное пространство V называется бесконечномерным, если Размерность линейного пространства - student2.ru в V найдется линейно независимая система из n векторов.

Теорема 3.2. Для того чтобы линейное пространство было n-мерным, необходимо и достаточно, чтобы в нем существовал базис, состоящий из n векторов.

► Достаточность. Дано: в пространстве V существует базис из n векторов

( Размерность линейного пространства - student2.ru ). (3.27)

Тогда в V есть линейно независимая система из n векторов (это система (3.27)). Покажем, что любая система из (n + 1)-го вектора в этом пространстве линейно зависима. Выберем одну из них:

( Размерность линейного пространства - student2.ru ). (3.28)

Каждый вектор системы (3.28) можно разложить по базису (3.27). Обозначим Размерность линейного пространства - student2.ru – координатные столбцы векторов системы (2) в базисе (1). Тогда

Размерность линейного пространства - student2.ru

(так как эта матрица имеет только n строк). По матричному критерию система (3.28) линейно зависима и, таким образом, Размерность линейного пространства - student2.ru .

Необходимость. Дано: Размерность линейного пространства - student2.ru . Согласно определению, в пространстве Размерность линейного пространства - student2.ru существует линейно независимая система из Размерность линейного пространства - student2.ru элементов. Пусть

( Размерность линейного пространства - student2.ru ) – (3.29)

одна из таких систем. Но Размерность линейного пространства - student2.ru система

( Размерность линейного пространства - student2.ru ) (3.30)

линейно зависима. По 4-му свойству линейной зависимости (§ 2) вектор

Размерность линейного пространства - student2.ru можно представить в виде линейной комбинации векторов системы (3.29), т. е.

Размерность линейного пространства - student2.ru

Таким образом, (3.29) – система образующих пространства V, а значит, и его базис. ◄

Замечание. При доказательстве необходимости мы одновременно показали, что в n-мерном пространстве любая линейно независимая система из n векторов является базисом.

Следствие. Любой базис конечномерного линейного пространства V содержит одинаковое количество векторов.

►Пусть в пространстве Размерность линейного пространства - student2.ru наряду с базисом (3.29) есть еще и некоторый базис

( Размерность линейного пространства - student2.ru ), (3.31)

состоящий из m векторов (m ≠ n). Рассмотрим два случая:

а) m > n. Тогда (3.31) линейно зависима согласно следствию к определению размерности, что противоречит определению базиса.

б) m < n. Так как (3.31) – базис пространства Размерность линейного пространства - student2.ru , то по теореме 3.2 Размерность линейного пространства - student2.ru , поэтому система (3.29) линейно зависима, что противоречит определению базиса. Таким образом, m = n. ◄

Вывод: размерность линейного пространства совпадает с количеством векторов в любом из его базисов.

Используя примеры базисов, приведенные в § 3, можно утверждать, что: Размерность линейного пространства - student2.ru , Размерность линейного пространства - student2.ru , Размерность линейного пространства - student2.ru , Размерность линейного пространства - student2.ru , Размерность линейного пространства - student2.ru , Размерность линейного пространства - student2.ru . Примером бесконечномерного пространства может служить пространство всех функций.

Упражнение. Докажите, что Размерность линейного пространства - student2.ru .

Теорема 3.3.В n-мерном линейном пространстве любую линейно независимую систему из m векторов при m < n можно дополнить до базиса.

►Пусть

Размерность линейного пространства - student2.ru – (3.32)

линейно независимая система пространства Размерность линейного пространства - student2.ru . Предположим, что при всех Размерность линейного пространства - student2.ru система Размерность линейного пространства - student2.ru линейно зависима. Тогда на основании свойства 4º § 2, вектор Размерность линейного пространства - student2.ru можно выразить через векторы системы (3.32), поэтому (3.32) – система образующих, а значит, и базис пространства Размерность линейного пространства - student2.ru , следовательно, Размерность линейного пространства - student2.ru , что противоречит условию. Таким образом, найдется вектор Размерность линейного пространства - student2.ru такой, что система

Размерность линейного пространства - student2.ru – (3.33)

линейно независима. Если m + 1 = n, то (3.33) – базис пространства Размерность линейного пространства - student2.ru . В противном случае с системой (3.33) поступаем так же, как и с системой (3.32). После конечного числа шагов получаем базис пространства Размерность линейного пространства - student2.ru .◄

Вопрос 6

Наши рекомендации