Уравнения Максвелла в среде без учёта пространственно-временной дисперсии
С помощью этих уравнений можно описывать электромагнитное поле в среде. В среде будем ставить индекс « »=микро
включает в себя как связанные, так и свободные заряды в веществе. Каждой точке пространства ставится в соответствие функция . Это значит, что мы заменяем реальную среду моделью – сплошной средой, т.е. мы свойства разных точек «размазываем» по пространству. Существуют следующие способы описания сплошной среды на основе реальной среды:
1. Усреднение по некоторому физическому объёму и времени .
2. Статистическое усреднение. Считаем что у нас есть макроскопически-идентичный ансамбль систем(т.е. все внешние условия одинаковы). Здесь производятся измерения для отдельных ансамблей, а потом происходит усреднение. Этот способ более предпочтителен.
Усреднение будем обозначать символами «< >». Отметим, что усреднение коммутативно с дифференциальными операторами.
Итак, усредняем:
Среда под действием внешнего электромагнитного поля поляризуется, т.е. реагирует на внешнее воздействие. В случае, когда отсутствует пространственная дисперсия, поляризация характеризуется векторами электрической и магнитной поляризации . Можно показать, что и выражаются через :
Введём обозначения: ;
Перенесём второе слагаемое из правой части в левую и объединим его с :
Итак, уравнения Максвелла для среды имеют вид:
Теорема Стокса.
- теорема Стокса
- Теорема Гаусса в операторной форме
Например
- теорема Стокса в операторной форме.
Задачи
1. Пользуясь теоремой Остроградского-Гаусса, вычислить интегралы:
если объем, который охватывает замкнутая поверхность, равен V; A –постоянный вектор.
Решение. Умножим искомый интеграл на постоянный вектор р:
Так как вектор рпроизволен, то
.
Аналогично показывается, что
Функциональные соотношения различных полей
Здесь - диэлектрическая проницаемость, а - диэлектрическая восприимчивость.
-разложение функции в ряд Маклорена.
Если же :
Возможно разложить по векторам в ряд Маклорена:
Первое слагаемое – это индукция, связанная с собственным дипольным моментом в отсутствие внешнего поля (собственная поляризация) – пироэлектрики.
Второе слагаемое – линейные среды.
Третье слагаемое – учёт нелинейности среды.
Среды, для которых нелинейные члены в разложении индукции по полю имеют вес, называются нелинейными.
Линейные среды
Введём обозначение: , тогда
Аналогично вводятся тензоры:
Для ферромагнетиков - учёт нелинейности.
Неоднородные среды
Среды, для которых материальные характеристики ( ) являются функциями координат.
Т.е. характеристики трансляционно неинвариантны.
Введём понятие сплошной среды. Сплошная среда – это среда в каждой точке которой измерение материальных характеристик даёт не нулевой результат. Сплошная среда – это модель. В реальной среде имеются микро-пустоты, т.е. вещество локализовано в некоторых точках пространства. Чтобы перейти к сплошной среде, нужно усреднить микро-параметры по достаточно большому объёму.
Анизотропные среды
Анизотропные среды (свойства), это такие среды, свойства которых зависят от направления, в котором это свойство измеряется.
Пусть в каком-то направлении исследуются оптические свойства среды. Затем мы повернули направление исследования, и оптические свойства изменились, т.е. оптические свойства зависят от угла поворота.
Так как свойства меняются, то они неинвариантны относительно вращения. Этим свойством обладает всякая анизотропная среда.
Для тензоров 2-го ранга есть исключения:
Кубические системы описываются тензорами изотропного вида, т.е.
Монокристалл – есть однородная анизотропная среда.
Тензоры и их свойства.
Запись преобразований тензора 2-го ранга при вращении.
Пусть у нас есть монокристалл определённого вещества. Существует набор преобразований при которых его свойства инвариантны. Операции симметрии можно задать матрицами ортогональных преобразований
Оператор принадлежит к симметрическим операторам. Итак, условие инвариантности:
Для монокристалла орторомбической системы:
Оси выбираются к характерным направлениям в кристалле.
Для монокристаллов гексагональной системы:
Для кубической: