Линейные однородные уравнения с постоянными коэффициентами

Линейные однородные уравнения с постоянными коэффициентами - student2.ru

Линейные однородные уравнения с постоянными коэффициентами - student2.ru

Итак:

k1,2 Частные решения Общие решения
D > 0, k1 ¹ k2 Линейные однородные уравнения с постоянными коэффициентами - student2.ru Линейные однородные уравнения с постоянными коэффициентами - student2.ru
D = 0, k1 = k2 Линейные однородные уравнения с постоянными коэффициентами - student2.ru Линейные однородные уравнения с постоянными коэффициентами - student2.ru
D < 0, k1,2 = a ± b×i Линейные однородные уравнения с постоянными коэффициентами - student2.ru Линейные однородные уравнения с постоянными коэффициентами - student2.ru

Пример:

1) Найти общее решение уравнения.

Линейные однородные уравнения с постоянными коэффициентами - student2.ru

2) Найти общее решение уравнения.

Линейные однородные уравнения с постоянными коэффициентами - student2.ru

ОПРЕДЕЛЕНИЕ: Если равенство a1×y1 + a2×y2 + … + an×yn = 0 выполняется только в том случае, когда a1 = a2 = … an = 0, то функции y1, y2, …, yn называются линейно независимыми.

ТЕОРЕМА: Если функции y1, y2, …, yn – линейно независимые решения уравнения a1×y(n) + a2×y(n–1) + an×y = 0, то его общее решение имеет вид y = c1×y1 + c2×y2 + … + cn×yn.

Пример:

Линейные однородные уравнения с постоянными коэффициентами - student2.ru

Неоднородные линейные уравнения второго порядка с постоянными коэффициентами.

Линейные однородные уравнения с постоянными коэффициентами - student2.ru

ТЕОРЕМА о структуре общего решения линейного неоднородного уравнения с постоянными коэффициентами: Общее решение y можно представить как сумму Линейные однородные уравнения с постоянными коэффициентами - student2.ru , где Линейные однородные уравнения с постоянными коэффициентами - student2.ru – общее решение соответствующего однородного уравнения

Линейные однородные уравнения с постоянными коэффициентами - student2.ru

Линейные однородные уравнения с постоянными коэффициентами - student2.ru – частное решение исходного неоднородного уравнения.

Доказательство.

Линейные однородные уравнения с постоянными коэффициентами - student2.ru

Линейные однородные уравнения с постоянными коэффициентами - student2.ru

Наши рекомендации