Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница

РА(В1) = Р(В1)∙РВ1(А)/ Р(А) = 0,0084/0,2144 ~ 0,039.

Ответ: 0,039.

№110.Два равносильных шахматиста играют в шахматы. Что вероятнее: выиграть две партии из четырех или три из шести (ничьи во внимание не принимаются)?

Решение:

Играют равносильные шахматисты, поэтому вероятность выигрыша p=1/2; следовательно, вероятность проигрыша q также равна 1/2. Так как во всех партиях вероятность выигрыша постоянна и безразлично, в какой последовательности будут выиграны партии, то применима формула Бернулли.

Найдем вероятность того, что две партии из четырех будут выиграны:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Найдем вероятность того, что выиграны три партии из шести:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Так как Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru > Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru , то вероятнее выиграть две партии из четырех, чем три из шести.

№111.Два равносильных противника играют в шахматы. Что вероятнее: а) выиграть одну партию из двух или две партии из четырех? б) выиграть не менее двух партий из четырех или не менее трех партий из пяти? Ничьи во внимание не принимаются.

Решение:

Играют равносильные шахматисты, поэтому вероятность выигрыша Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru следовательно, вероятность проигрыша Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru . Так как во всех партиях вероятность выигрыша постоянна и безразлично, в какой последовательности будут выиграны партии, то применима формула Бернулли.

а) Найдем вероятность того, что две партии из четырех будут выиграны:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Найдем вероятность того, что одна партия из двух будет выиграна:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

б) Найдем вероятность выиграть не менее двух партий из четырех:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Найдем вероятность выиграть не менее трех партий из пяти:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Таким образом, вероятнее выиграть не менее двух партий из четырех

№112Монету бросают пять раз. Найти вероятность того, что “герб” выпадет: а)менее двух раз; б)не менее двух раз.

Решение:

При бросании монеты вероятность выпадения герба и решки, равновероятны, поэтому вероятность выпадения герба равна Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru следовательно вероятность выпадения решки Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru ; Так как при бросании вероятность постоянна, то применима формула Бернулли.

а) Найдем вероятность того, что герб выпадет менее двух раз:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

б) Найдем вероятность того, что герб выпадет не менее двух раз:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

№113.а) Найти вероятность того, что событие А появится не менее трёх раз в четырёх независимых испытаниях, если вероятность появления события А в одном испытании равна 0,4;

б) Событие В появится в случае, если событие А наступит не менее четырёх раз. Найти вероятность наступления события В, если будет произведено 5 независимых испытаний, в каждом из которых вероятность появления события А равна 0,8.

Решение:

а)Так как вероятность появления события А во всех испытаниях одинакова и все испытания независимы, то применяем формулу Бернулли. Так как вероятность появления события А в одном испытании равна 0,4, т.е. р = 0,4, то вероятность не появления события А в одном испытании равна

q = 1 – 0,4 = 0,6.

Найдём вероятность того, что событие А появится ровно 3 раза в четырёх независимых испытаниях и найдём вероятность того, что событие А появится ровно 4 раза в четырёх независимых испытаниях и просуммируем их:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

б) Так как вероятность появления события А во всех испытаниях одинакова и все испытания независимы, то применяем формулу Бернулли.

р = 0,8 q = 0,2

Найдём вероятности того, что событие А появится ровно 4 раза и 5 раз в пяти независимых испытаниях и просуммируем:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

№114. Устройство состоит из трех независимо работающих основных элементов. Устройство отказывает, если откажет хотя бы один элемент. Вероятность отказа каждого элемента за время t равна 0,1. Найти вероятность безотказной работы устройства за время t, если: а) работают только основные элементы; б) включен один резервный элемент; в) включены два резервных элемента. Предполагается, что резервные элементы работают в том же режиме, что и основные, вероятность отказа каждого резервного элемента также равна 0,1 и устрой- устройство отказывает, если работает менее трех элементов.

Решение:

По условию Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru , следовательно вероятность стабильной работы каждого элемента Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru . Так как безразлично какой из элементов откажет и вероятности отказа всех элементов равны, применима формула Бернулли.

а) Найдём вероятность того, что будут работать все 3 элемента Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru :

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

б) Найдём вероятность того, что устройство будет работать при одном дополнительном элементе на протяжении времени t. Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru :

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

в) Найдём вероятность того, что устройство будет работать при двух дополнительных элементах на протяжении времени t. Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru :

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

№115.В семье пять детей. Найти вероятность того, что среди этих детей: а) два мальчика; б) не более двух мальчиков в) более двух мальчиков г) не менее двух и не более трёх мальчиков.

Вероятность рождения мальчиков принять равной 0.51

Решение:

По условию p=0.51 следовательно вероятность q= 0.49 и применима формула Бернулли.

а) Найдём вероятность того, что в семье 2 мальчика:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

б) Найдём вероятность того, что в семье не более двух мальчиков:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

в) Найдём вероятность того, что в семье более двух мальчиков:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

г) найдём вероятность того, что в семье не менее двух и не более трёх мальчиков:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

№116......

№117 На отрезок АВ длины а наудачу брошено пять точек. Найти вероятность того, что две точки будут находиться от точки А на расстоянии, меньшем x, а три — на расстоянии, большем x. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения.

Решение:

т.к. p = xa - вероятность того, что точка будет находиться на расстоянии меньшем чем x, следовательно, q = 1 – p=1- xa= a-xa. По формуле Бернулли имеем: Pnk= Cnkpkqn-k. P52= C52xa2a-xa3.

№118 Отрезок разделен на четыре равные части. На отрезок наудачу брошено восемь точек. Найти вероятность того, что на каждую из четырех частей отрезка попадет по две точки. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения.

Решение:

Вероятность того, что точка попадет в нужный отрезок равна р=1/4.

q=3/4

Искомая вероятность равна

Р= С82 С62 С42 С22*(1/4)8

№119 Найти вероятность того, что событие A наступит ровно 70 раз в 243 испытаниях, если вероятность появления этого события в каждом испытании равна 0,25.

Решение:

По условию, n=243; k=70; p=0,25; q=0,75. Т.к. n=243 – достаточно большое число, воспользуемся локальной теоремой Лапласа:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Найдем значение x: Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru . По таблице найдем Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Тогда искомая вероятность Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Ответ: Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

№120 Найти вероятность того, что событие А наступит 1400 раз в 2400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,6.

Решение:

По условию, n=2400; k=1400; p=0,6; q=0,4. Так как n=2400 – достаточно большое число, воспользуемся локальной теоремой Лапласа:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Найдем значение x: Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

Так как Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru четная функция, то Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru = Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

По таблице найдем Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Тогда искомая вероятность Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Ответ: 0,0041.

№121 Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена ровно 75 раз.

Решение.

Так как n велико, воспользуемся локальной теоремой Лапласа:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru (k)= Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru φ(x).

Вычислим x:

X= Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru = Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru =-1,25.

Функция φ(x) четная, поэтому φ(-1,25)= φ(1,25)=0,1826.

Искомая вероятность

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

№122 Вероятность рождения мальчика равна 0,51. Найти вероятность того, что среди 100 новорожденных окажется 50 мальчиков.

Решение:

P(k)= 1/√(npq)*

Вычислим х:

х_р—пр_ 1400—24000,6 _ 40

Vnpq ~ У 2400 -0,6 0,4 "~ 24 ~

Функция ф(^)=—^=е~лг*/'2—четная, поэтому ф(—1,67)=ф( 1,67).

По таблице приложения 1 найдем ф( 1,67) = 0,0989.

Искомая вероятность

Я24оо A400) = 1/24-0,0989=0,0041.

№123 Монета брошена 2N раз (N велико!). Найти вероятность того, что «герб» выпадет ровно N раз.

Решение.

n=2N, k=N, p=0,5, q=0,5. Для нахождения вероятности выпадения «герба» ровно N раз воспользуемся локальной теоремой Лапласа :

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru (N)=φ(x)* 1/ Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru ;

φ(x)= Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru 1/ Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru ;

x=(k-pn)/ Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru ;

x=0; φ(x)≈0,3989; Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru (N)≈0.5641/ Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

№124 Монета брошена 2N раз. Найти вероятность того, что «герб» выпадет на 2m раз больше, чем надпись.

Решение: Т.к. исход каждого испытания не зависит от предыдущих исходов и возможных исходов два («герб» или надпись), то вероятность выпадения «герба» в каждом испытании равна Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru . Всего проведено n=2N испытаний, а «герб» выпал на 2m раза больше, чем надпись, значит обозначим количество выпадений «герба» за t, получим уравнение: Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru . Очевидно, что количество исходов, в которых выпал «герб», равно Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru По локальной теореме Лапласа вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна p, событие наступит ровно k раз, равна:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Подставим значения:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

№125 Вероятность появления события в каждом из Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru независимых испытаний постоянна и равна Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru . Найти вероятность того, что событие появится: а) не менее 75раз и не более 90раз; б) не менее 75раз; в) не более 74раз.

Решение:

Воспользуемся интегральной теоремой Лапласа: Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru , где Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru – функция Лапласа, Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

a) По условию, Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru . Вычислим Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru :

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Учитывая, что функция Лапласа нечетна, т.е. Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru , получим:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

По таблице приложения Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru найдем:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

Искомая вероятность:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

б) Требование, чтобы событие появилось не менее Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru раз, означает, что число появления событий может быть равно Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru . Таким образом в рассматриваемом случае следует принять Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru . Тогда:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

По таблице приложения Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru найдем:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

Искомая вероятность:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

в) События – « Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru появилось не менее Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru раз» и « Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru появилось не более Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru раз» противоположны, поэтому сумма вероятностей этих событий равна единице. Следовательно, искомая вероятность:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Лукинова Наталья

№126 Вероятность появления события в каждом из 2100 испытаний равна 0,7. Найти вероятность того что событие появится

А) Не менее 1470 и не более 1500 раз

Б) Не менее 1470 раз

В) Не более 1469 раз

Решение:

Воспользуемся интегральной теоремой Лапласа:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru , где Ф(х)- функция Лапласа,

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru , Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

А) По условию, n= 2100; p=0,7; q=0,3; k1= 1470; k2= 1500;

Тогда Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru =0; Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru =1,43

По таблице значений функции Лапласа:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Ответ: 0,4236

Б) По условию, n=2100; p=0,7; q=0,3; k1=1470; k2=2100;

Тогда Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru =0; Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru =30

По таблице значений функции Лапласа:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru ;

Т.к. Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru =0,5 и Ф(5)=0,499999, то Ф(30)=0,5

Ответ: 0,5

В) По условию, n=2100; p=0,7; q=0,3; k1=0; k2=1469;

Условие В) обратно условию Б), поэтому P2100(1470,2100)+P2100(0,1469)=1

Т.к. P2100(1470,2100)=0,5 (см. пункт Б)), то P2100(0,1469)=1-P2100(1470,2100)=1-0,5=0,5

Ответ: 0,5

№127 Вероятность появления события в каждом из 21 независимых испытаний равна 0,7. Найти вероятность того, что событие появится в большинстве испытаний.

Решение:

Воспользуемся интегральной теоремой Лапласа:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru где Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru и Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

По условию, n=21; p=0,7; q=0,3; k1=11; k2=21;

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru = Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru =Ф( Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru =Ф(3)=0,4986

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru = Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru = Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru ( Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru )=Ф(-1,8)=0,4608

Так как функция Лапласа нечетная то получим следующее равенство:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru = Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru =0,4986+0,4608=0,9594

Ответ: 0,959

№128 Монета брошена 2N раз (N велико!). Найти вероятность того, что число выпадений «герба» будет заключено между числами Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru и Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

Решение:

Воспользуемся интегральной теоремой Лапласа:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru , где Ф(х) – функция Лапласа,

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru , Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

По условию задачи n=2N; p=0,5; q=0,5, Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru = Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru ; Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru = Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

Вычислим Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru и Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru :

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Итак, т.к. функция Ф(x) нечетна, получаем:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Ответ: 0,6826

№129 Вероятность появления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,9 можно было ожидать, что событие появится не менее 75 раз?

Решение:

По условию: p=0,8; q=0,2; k1=75; k2=n; Pn=(75,n)=0,9

Воспользуемся интегральной теоремой Лапласа:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru где Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru и Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru , Ф(x) – функция Лапласа

Подставляя данные задачи в формулу, получим

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Или

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Очевидно, число испытаний n>75, поэтому Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru 4,33. Поскольку функция Лапласа — возрастающая и Ф(4)≈0,5, то можно положить Ф Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru 0,5.

Следовательно,

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Таким образом,

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru (*)

По таблице приложения 2 найдем Ф(1,28)≈0,4. Отсюда и из соотношения (*), учитывая, что функция Лапласа нечетная, получим

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Решив это уравнение, как квадратное относительно Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru получим Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru . Следовательно, искомое число испытаний n=100.

Ответ: 100

№130 Вероятность появления положительного результат в каждом из n опытов равна 0,9. Сколько нужно произвести опытов, чтобы с вероятностью 0,98 можно было ожидать, что не менее 150 опытов дадут положительный результат.

Решение:

По условию n=n; p=0,9; q=0,1; k1=150; k2=n; Pn(k1,k2)=0,98

Pn(k1,k2)=Pn(150,n)

Воспользуемся интегральной теоремой Лапласа:

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru где Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru и Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru , Ф(x) - функция Лапласа

Подставляя данные задачи в формулу, получим

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Очевидно, число испытаний n>150, поэтому Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru 4,08. Поскольку функция Лапласа — возрастающая и Ф(4)≈0,5, то можно положить Ф Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru 0,5.

Следовательно,

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

n=177

Ответ: 177

№131Вероятность появления события в каждом из 625 независимых испытаний равна 0,8. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,04

Решение:

По условию, n=625; p=0,8; q=0,2; Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

Требуется найти вероятность Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Воспользуемся формулой Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Имеем
Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

По таблице приложения 2 найдем Ф(2,5)=0,4938. Следовательно, 2Ф(2,5)=0,9876.

Итак, искомая вероятность приближенно равна 0,9876.

Ответ: 0,9876

№132 Вероятность появления события в каждом из 900 независимых испытаний равна 0,5. Найти вероятность того, что относительная частота появления события отклонится

от его вероятности по абсолютной величине не более чем на 0,02.

Решение:

По условию: n = 900; p = 0,5; q = 0,5; ε = 0,02;

Требуется найти вероятность: Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru .

Воспользуемся формулой: Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Имеем:
Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Ответ: 0,7698

№133 Вероятность появления события в каждом из 10000 независимых испытаний равна 0,75. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,01

Решение:

По условию, n=10000; p=0,75; q=0,25; ε=0,01

Требуется найти вероятность Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Воспользуемся формулой Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Получаем
Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 6 страница - student2.ru

Наши рекомендации