Первая космическая скорость

02.12.2014

Урок 22 (10 класс)

Тема. Искусственные спутники Земли. Развитие космонавтики.

О движении бросаемых тел

В 1638 г. в Лейдене вышла книга Галилея «Беседы и математические доказательства, касающиеся двух новых отраслей науки». Четвертая глава этой книги называлась «О движении бросаемых тел». Не без труда удалось ему убедить людей в том, что в безвоздушном пространстве «крупинка свинца должна падать с такой же быстротой, как пушечное ядро». Но когда Галилей поведал миру о том, что ядро, вылетевшее из пушки в горизонтальном направлении, находится в полете столько же времени, что и ядро, просто выпавшее из ее жерла на землю, ему не поверили. Между тем это действительно так: тело, брошенное с некоторой высоты в горизонтальном направлении, движется до земли в течение такого же времени, как если бы оно просто упало с той же высоты вертикально вниз.
Чтобы убедиться в этом, воспользуемся прибором, принцип действия которого иллюстрирует рисунок 104, а. После удара молоточком М по упругой пластине П шарики начинают падать и, несмотря на различие в траекториях, одновременно достигают земли. На рисунке 104, б изображена стробоскопическая фотография падающих шариков. Для получения этой фотографии опыт проводили в темноте, а шарики через равные интервалы времени освещали яркой вспышкой света. При этом затвор фотоаппарата был открыт до тех пор, пока шарики не упали на землю. Мы видим, что в одни и те же моменты времени, когда происходили вспышки света, оба шарика находились на одной и той же высоте и столь же одновременно они достигли земли.

Первая космическая скорость - student2.ru

Время свободного падения с высоты h (вблизи поверхности Земли) может быть найдено по известной из механики формуле s=аt2/2. Заменяя здесь s на h и а на g, перепишем эту формулу в виде

Первая космическая скорость - student2.ru

откуда после несложных преобразований получим

Первая космическая скорость - student2.ru

Такое же время будет находиться в полете и тело, брошенное с той же высоты в горизонтальном направлении. В этом случае, согласно Галилею, «к равномерному беспрепятственному движению присоединяется другое, вызываемое силой тяжести, благодаря чему возникает сложное движение, слагающееся из равномерного горизонтального и естественно ускоренного движений».
За время, определяемое выражением (44.1), двигаясь в горизонтальном направлении со скоростью v0 (т. е. с той скоростью, с которой оно было брошено), тело переместится по горизонтали на расстояние

Первая космическая скорость - student2.ru

Из этой формулы следует, что дальность полета тела, брошенного в горизонтальном направлении, пропорциональна начальной скорости тела и возрастает с увеличением высоты бросания.
Чтобы выяснить, по какой траектории движется в этом случае тело, обратимся к опыту. Присоединим к водопроводному крану резиновую трубку, снабженную наконечником, и направим струю воды в горизонтальном направлении. Частицы воды при этом будут двигаться точно так же, как и брошенное в том же направлении тело. Отворачивая или, наоборот, заворачивая кран, можно изменить начальную скорость струи и тем самым дальность полета частиц воды (рис. 105), однако во всех случаях струя воды будет иметь форму параболы. Чтобы убедиться в этом, позади струи следует поставить экран с заранее начерченными на нем параболами. Струя воды будет точно соответствовать изображенным на экране линиям.

Первая космическая скорость - student2.ru

Итак, свободно падающее тело, начальная скорость которого горизонтальна, движется по параболической траектории.
По параболе будет двигаться тело и в том случае, когда оно брошено под некоторым острым углом к горизонту. Дальность полета в этом случае будет зависеть не только от начальной скорости, но и от угла, под которым она была направлена. Проводя опыты со струей воды, можно установить, что наибольшая дальность полета при этом достигается тогда, когда начальная скорость составляет с горизонтом угол 45° (рис. 106).

Первая космическая скорость - student2.ru

При больших скоростях движения тел следует учитывать сопротивление воздуха. Поэтому дальность полета пуль и снарядов в реальных условиях оказывается не такой, как это вытекает из формул, справедливых для движения в безвоздушном пространстве. Так, например, при начальной скорости пули 870 м/с и угле 45° в отсутствие сопротивления воздуха дальность полета составила бы примерно 77 км, между тем как в действительности она не превышает 3,5 км.

Первая космическая скорость

Вычислим скорость, которую надо сообщить искусственному спутнику Земли, чтобы он двигался по круговой орбите на высоте h над Землей.
На больших высотах воздух сильно разрежен и оказывает незначительное сопротивление движущимся в нем телам. Поэтому можно считать, что на спутник действует только гравитационная сила Первая космическая скорость - student2.ru , направленная к центру Земли (рис.4.4).

Первая космическая скорость - student2.ru

По второму закону Ньютона Первая космическая скорость - student2.ru .
Центростремительное ускорение спутника определяется формулой Первая космическая скорость - student2.ru , где h - высота спутника над поверхностью Земли. Сила же, действующая на спутник, согласно закону всемирного тяготения определяется формулой Первая космическая скорость - student2.ru , где M - масса Земли.
Подставив значения F и a в уравнение для второго закона Ньютона, получим

Первая космическая скорость - student2.ru

Отсюда

Первая космическая скорость - student2.ru

Из полученной формулы следует, что скорость спутника зависит от его расстояния от поверхности Земли: чем больше это расстояние, тем с меньшей скоростью он будет двигаться по круговой орбите. Примечательно то, что эта скорость не зависит от массы спутника. Значит, спутником Земли может стать любое тело, если ему сообщить определенную скорость. В частности, при h=2000 км=2•106 м скорость v≈6900 м/с.
Минимальная скорость, которую надо сообщить телу на поверхности Земли, чтобы оно стало спутником Земли, движущимся по круговой орбите, называется первой космической скоростью.
Первую космическую скорость Первая космическая скорость - student2.ru можно найти по формуле (4.7), если принять h=0:

Первая космическая скорость - student2.ru

Подставив в формулу (4.8) значение G и значения величин M и R для Земли, можно вычислить первую космическую скорость для спутника Земли:

Первая космическая скорость - student2.ru

Если такую скорость сообщить телу в горизонтальном направлении у поверхности Земли, то при отсутствии атмосферы оно станет искусственным спутником Земли, обращающимся вокруг нее по круговой орбите.
Такую скорость спутникам способны сообщать только достаточно мощные космические ракеты. В настоящее время вокруг Земли обращаются тысячи искусственных спутников.
Любое тело может стать искусственным спутником другого тела (планеты), если сообщить ему необходимую скорость.

Движение искусственных спутников

В работах Ньютона можно найти замечательный рисунок, показывающий, как можно осуществить переход от простого падения тела по параболе к орбитальному движению тела вокруг Земли (рис. 107). «Брошенный на землю камень,- писал Ньютон,- отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, то он упадет дальше». Продолжая эти рассуждения, нетрудно прийти к выводу, что если бросить камень с высокой горы с достаточно большой скоростью, то его траектория могла бы стать такой, что он вообще никогда не упал бы на Землю, превратившись в ее искусственный спутник.

Первая космическая скорость - student2.ru

Минимальная скорость, которую необходимо сообщить телу у поверхности Земли, чтобы превратить его в искусственный спутник, называется первой космической скоростью.
Для запуска искусственных спутников применяют ракеты, поднимающие спутник на заданную высоту и сообщающие ему в горизонтальном направлении требуемую скорость. После этого спутник отделяется от ракеты-носителя и продолжает дальнейшее движение лишь под действием гравитационного поля Земли. (Влиянием Луны, Солнца и других планет мы здесь пренебрегаем.) Ускорение, сообщаемое этим полем спутнику, есть ускорение свободного падения g. С другой стороны, поскольку спутник движется по круговой орбите, это ускорение является центростремительным и поэтому равно отношению квадрата скорости спутника к радиусу его орбиты. Таким образом,

Первая космическая скорость - student2.ru

Откуда

Первая космическая скорость - student2.ru

Подставляя сюда выражение (43.1), получаем

Первая космическая скорость - student2.ru

Мы получили формулу круговой скорости спутника, т. е. такой скорости, которую имеет спутник, двигаясь по круговой орбите радиусомr на высоте h от поверхности Земли.
Чтобы найти первую космическую скорость v1, следует учесть, что она определяется как скорость спутника вблизи поверхности Земли, т. е. когда h<<R3 и r≈R3. Учитывая это в формуле (45.1), получаем

Первая космическая скорость - student2.ru

Подстановка в эту формулу числовых данных приводит к следующему результату:

Первая космическая скорость - student2.ru

Сообщить телу такую огромную скорость впервые удалось лишь в 1957 г., когда в СССР под руководством С. П. Королева был запущен первый в мире искусственный спутник Земли (сокращенно ИСЗ). Запуск этого спутника (рис. 108) - результат выдающихся достижений в области ракетной техники, электроники, автоматического управления, вычислительной техники и небесной механики.

Первая космическая скорость - student2.ru

В 1958 г. на орбиту был выведен первый американский спутник «Эксплорер-1», а несколько позже, в 60-х гг., запуски ИСЗ произвели и другие страны: Франция, Австралия, Япония, КНР, Великобритания и др., причем многие спутники были запущены с помощью американских ракет-носителей.
В настоящее время запуск искусственных спутников является привычным делом, и в практике космических исследований уже давно получило широкое распространение международное сотрудничество.
Запускаемые в разных странах спутники могут быть разделены по своему назначению на два класса:
1. Научно-исследовательские спутники. Они предназначены для изучения Земли как планеты, ее верхней атмосферы, околоземного космического пространства, Солнца, звезд и межзвездной среды.
2. Прикладные спутники. Они служат удовлетворению земных нужд народного хозяйства. Сюда относятся спутники связи, спутники для изучения природных ресурсов Земли, метеорологические спутники, навигационные, военные и др.
К ИСЗ, предназначенным для полета людей, относятся пилотируемые корабли-спутники и орбитальные станции.
Помимо работающих спутников на околоземных орбитах обращаются вокруг Земли и так называемые вспомогательные объекты: последние ступени ракет-носителей, головные обтекатели и некоторые другие детали, отделяемые от ИСЗ при выводе их на орбиты.
Заметим, что из-за огромного сопротивления воздуха вблизи поверхности Земли спутник не может быть запущен слишком низко. Например, на высоте 160 км он способен совершить всего лишь один оборот, после чего снижается и сгорает в плотных слоях атмосферы. По этой причине первый искусственный спутник Земли, выведенный на орбиту на высоте 228 км, просуществовал только три месяца.
С увеличением высоты сопротивление атмосферы уменьшается и при h>300 км становится пренебрежимо малым.
Возникает вопрос: а что будет, если запустить спутник со скоростью, большей первой космической? Расчеты показывают, что если превышение незначительно, то тело при этом остается искусственным спутником Земли, но движется уже не по круговой, а по эллиптической орбите. С увеличением скорости орбита спутника становится все более вытянутой, пока наконец не «разрывается», превратившись в незамкнутую (параболическую) траекторию (рис. 109).

Минимальная скорость, которую нужно сообщить телу у поверхности Земли, чтобы оно ее покинуло, двигаясь по незамкнутой траектории, называется второй космической скоростью.
Вторая космическая скорость в √2 раза больше первой космической:

Первая космическая скорость - student2.ru

При такой скорости тело покидает область земного притяжения и становится спутником Солнца.
Чтобы преодолеть притяжение Солнца и покинуть Солнечную систему, нужно развить еще большую скорость - третью космическую. Третья космическая скорость равна 16,7 км/с. Имея примерно такую скорость, автоматическая межпланетная станция «Пионер-10» (США) в 1983 г. впервые в истории человечества вышла за пределы Солнечной системы и сейчас летит по направлению к звезде Барнарда.

Первая космическая скорость - student2.ru

Примеры решения задач

Задача 1. Тело бросают вертикально вверх со скоростью 25 м/с. Определите высоту подъема и время полета.

Дано: Решение:

Первая космическая скорость - student2.ru Первая космическая скорость - student2.ru ; 0=0+25.t-5.t2

Первая космическая скорость - student2.ru ; 0=25-10.t1; t1=2,5c; Н=0+25.2,5-5.2,52=31,25 (м)

t- ? 5t=25; t=5c

H - ? Ответ: t=5c; Н=31,25 (м)

Первая космическая скорость - student2.ru

Рис. 1. Выбор системы отсчета

Сначала мы должны выбрать систему отсчета. Систему отсчета выбираем связанную с землей, начальная точка движения обозначена 0. Вертикально вверх направлена ось Оу. Скорость Первая космическая скорость - student2.ru направлена вверх и совпадает по направлению с осью Оу. Ускорение свободного падения направлено вниз Первая космическая скорость - student2.ru по той же оси.

Запишем закон движения тела. Нельзя забывать о том, что скорость и ускорение величины векторные.

Первая космическая скорость - student2.ru

Следующий шаг. Обратите внимание, что конечная координата, в конце, когда тело поднялось на некоторую высоту, а потом упало обратно на землю, будет равна 0. Начальная координата также равна 0: 0=0+25.t-5.t2.

Если решить это уравнение, получим время: 5t=25; t=5 c.

Определим теперь максимальную высоту подъема. Сначала определим время подъема тела до верхней точки. Для этого мы используем уравнение скорости: Первая космическая скорость - student2.ru .

Мы записали уравнение в общем виде: 0=25-10.t1,t1=2,5 c.

Когда мы подставляем известные нам значения, то получаем, что время подъема тела, время t1 составляет 2,5 с.

Здесь бы хотелось отметить то, что все время полета составляет 5 с, а время подъема до максимальной точки 2,5 с. Это означает, что тело поднимается ровно столько времени, сколько потом будет обратно падать на землю. Теперь воспользуемся уравнением, которое мы уже использовали, – закон движения. В этом случае мы вместо конечной координаты ставим Н, т.е. максимальную высоту подъема: Н=0+25.2,5-5.2,52=31,25 (м).

Произведя несложные расчеты, получаем, что максимальная высота подъема тела составит 31,25 м. Ответ: t=5c; Н=31,25 (м).

В данном случае мы воспользовались практически всеми уравнениями, которые изучали при исследовании свободного падения.

Задача 2. Определите высоту над уровнем Земли, на которойускорение свободного падения уменьшается в два раза.

Дано: Решение:

RЗ =6400 км Первая космическая скорость - student2.ru ; Первая космическая скорость - student2.ru ; Первая космическая скорость - student2.ru

Первая космическая скорость - student2.ru Первая космическая скорость - student2.ru .

Первая космическая скорость - student2.ru

Н -? Ответ: Н ≈ 2650 км.

Для решения этой задачи нам потребуется, пожалуй, одно единственное данное. Это радиус Земли. Он равен 6400 км.

Ускорение свободного падения определяется на поверхности Земли следующим выражением: Первая космическая скорость - student2.ru . Это на поверхности Земли. Но стоит нам только удалиться от Земли на большое расстояние, ускорение будет определяться уже следующим образом: Первая космическая скорость - student2.ru .

Если теперь мы разделим эти величины друг на друга, получим следующее: Первая космическая скорость - student2.ru .

Сокращаются постоянные величины, т.е. гравитационная постоянная и масса Земли, а остается радиус Земли и высота, и это отношение равно 2.

Преобразуя теперь полученные уравнения, находим высоту: Первая космическая скорость - student2.ru .

Если подставить значения в полученную формулу, получаем ответ: Н ≈ 2650 км.

Задача 3.Тело движется по дуге радиусом 20 см со скоростью 10 м/с. Определите центростремительное ускорение.

Дано: СИ Решение:

R=20 см 0,2 м Первая космическая скорость - student2.ru

V=10 м/с

аЦ - ? Ответ: аЦ = Первая космическая скорость - student2.ru .

Формула для вычисления центростремительного ускорения известна. Подставляя сюда значения, мы получаем: Первая космическая скорость - student2.ru . В этом случае центростремительное ускорение получается огромным, посмотрите на его значение Первая космическая скорость - student2.ru . Ответ: аЦ = Первая космическая скорость - student2.ru .

После решения этой, казалось бы, несложной задачи, хотелось бы отметить следующее. Посмотрите еще раз на значение ускорения, заметьте, что тело движется по дуге всего лишь радиусом 20 см и скорость-то невелика (всего 10 м/с), а какое получается огромное ускорение. Можете себе представить, какие огромные ускорения и перегрузки возникают в движущемся колесе автомобиля. Там ведь скорость довольно большая, бывает, гораздо больше 10 м/с.

Задача 4.Определите высоту над уровнем Земли, на которойускорение свободного падения уменьшается в два раза.

Дано: Решение:

RЗ =6400 км Первая космическая скорость - student2.ru ; Первая космическая скорость - student2.ru ; Первая космическая скорость - student2.ru

Первая космическая скорость - student2.ru Первая космическая скорость - student2.ru .

Первая космическая скорость - student2.ru

Н -? Ответ: Н ≈ 2650 км.

Для решения этой задачи нам потребуется, пожалуй, одно единственное данное. Это радиус Земли. Он равен 6400 км.

Ускорение свободного падения определяется на поверхности Земли следующим выражением: Первая космическая скорость - student2.ru . Это на поверхности Земли. Но стоит нам только удалиться от Земли на большое расстояние, ускорение будет определяться уже следующим образом: Первая космическая скорость - student2.ru .

Если теперь мы разделим эти величины друг на друга, получим следующее: Первая космическая скорость - student2.ru

Сокращаются постоянные величины, т.е. гравитационная постоянная и масса Земли, а остается радиус Земли и высота, и это отношение равно 2.

Преобразуя теперь полученные уравнения, находим высоту: Первая космическая скорость - student2.ru .

Если подставить значения в полученную формулу, получаем ответ: Н ≈ 2650 км.

Домашнее задание

1. Е.В. Коршак, А.И. Ляшенко, В.Ф. Савченко. Физика. 10 класс, «Генеза», 2010. Читать с.83-84.

2. Законспектировать лекцию.

3. Ответить на вопросы:

- От чего зависит дальность полета тела, брошенного в горизонтальном направлении? По какой траектории движется такое тело?

- Под каким углом к горизонту следует бросать с земли мяч, чтобы дальность его полета оказалась максимальной?
- Как влияет сопротивление воздуха на движение брошенных тел?
- По какой траектории движется тело, брошенное с самолета, относительно: а) Земли; б) самолета?

- Какую скорость называют первой космической?
- Как изменяется скорость движения спутника по орбите с увеличением высоты h?
- Зависит ли скорость движения спутника от его массы?
- Как направлены скорость и ускорение спутника, движущегося по круговой орбите? Чему равно ускорение такого спутника?
- Можно ли считать круговое движение спутника равноускоренным? Почему?
- На какие два класса делят искусственные спутники Земли?
- Какую скорость называют второй космической? Чему она равна?
- Что представляет собой третья космическая скорость?

Наши рекомендации