Линейно зависимые и линейно независимые векторы
Векторы, их свойства и действия с ними
Векторы, действия с векторами, линейное векторное пространство.
Векторы- упорядоченная совокупность конечного количества действительных чисел.
Действия: 1.Умножение вектора на число: лямда*вектор х=(лямда*х1, лямда*х2… лямда*хn).(3,4, 0, 7)*3=(9, 12,0,21)
2.Сложение векторов (принадлежат одному и тому же векторному пространству) вектор х+вектор у = (х1+у1, х2+у2,… хn+уn,)
3. Вектор 0=(0,0…0)---n En – n-мерное (линейное пространство) вектор х +вектор 0 = вектор х
Теорема. Для того чтобы система n векторов, n- мерного линейного пространства была линейно зависимой, необходимо и достаточно, чтобы один из векторов были линейной комбинацией остальным.
Теорема. Любая совокупность n+ 1ого вектора n- мерного линейного пространства явл. линейно зависимой.
Сложение векторов, умножение векторов на числа. Вычитание векторов.
Суммой двух векторов и называется вектор , направленный из начала вектора в конец вектора при условии, что начало совпадет с концом вектора . Если векторы заданы их разложениями по базисным ортам, то при сложении векторов складываются их соответствующие координаты.
Рассмотрим это на примере декартовой системы координат. Пусть
Покажем, что
Из рисунка 3 видно, что
Сумма любого конечного числа векторов может быть найдена по правилу многоугольника (рис. 4): чтобы построить сумму конечного числа векторов, достаточно совместить начало каждого последующего вектора с концом предыдущего и построить вектор, соединяющий начало первого вектора с концом последнего.
Свойства операции сложения векторов:
В этих выражениях m, n - числа.
Разностью векторов и называют вектор Второе слагаемое является вектором, противоположным вектору по направлению, но равным ему по длине.
Таким образом, операция вычитания векторов заменяется на операцию сложения
Вектор , начало которого находится в начале координат, а конец - в точке А (x1, y1, z1), называют радиус-вектором точки А и обозначают или просто . Так как его координаты совпадают с координатами точки А, то его разложение по ортам имеет вид
Вектор , имеющий начало в точке А(x1, y1, z1) и конец в точке B(x2, y2, z2), может быть записан в виде
где r2- радиус-вектор точки В; r1- радиус-вектор точки А.
Поэтому разложение вектора по ортам имеет вид
Его длина равна расстоянию между точками А и В
УМНОЖЕНИЕ
Так в случае плоской задачи произведение вектор на a = {ax; ay} на число b находится по формуле
a · b = {ax · b; ay · b}
Пример 1. Найти произведение вектора a = {1; 2} на 3.
Решение
3 · a = {3 · 1; 3 · 2} = {3; 6}
Так в случае пространственной задачи произведение вектора a = {ax; ay; az} на число b находится по формуле
a · b = {ax · b; ay · b; az · b}
Пример 1. Найти произведение вектора a = {1; 2; -5} на 2.
Решение
2 · a = {2 · 1; 2 · 2; 2 · (-5)} = {2; 4; -10}
Скалярное произведение векторов и где - угол между векторами и ; если либо , то
Из определения скалярного произведения следует, что
где, например, есть величина проекции вектора на направление вектора .
Скалярный квадрат вектора:
Свойства скалярного произведения:
Скалярное произведение в координатах
Если то
Угол между векторами
Угол между векторами — угол между направлениями этих векторов (наименьший угол).
Векторное произведение(Векторное произведение двух векторов. )— это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Произведение не является ни коммутативным, ни ассоциативным (оно является антикоммутативным) и отличается от скалярного произведения векторов. Во многих задачах инженерии и физики нужно иметь возможность строить вектор, перпендикулярный двум имеющимся — векторное произведение предоставляет эту возможность. Векторное произведение полезно для «измерения» перпендикулярности векторов — длина векторного произведения двух векторов равна произведению их длин, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.
Векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.
В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности»
Коллинеарность векторов.
Два ненулевых (не равных 0) вектора называются коллинеа́рными, если они лежат на параллельных прямых или на одной прямой. Допусти́м, но не рекомендуется синоним — «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены («сонаправлены») или противоположно направлены (в последнем случае их иногда называют «антиколлинеарными» или «антипараллельными»).
Сме́шанное произведе́ние векторов(a, b,c) — скалярное произведение вектора a на векторное произведение векторов b и c:
(a,b,c)=a ⋅(b ×c)
иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее — псевдоскаляр).
Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда, образованного векторами( a,b,c) .
Свойства
Смешанное произведение кососимметрично по отношению ко всем своим аргументам:т. е. перестановка любых двух сомножителей меняет знак произведения. Отсюда следует, чтоСмешанное произведение в правой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и :
Смешанное произведение в левой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и , взятому со знаком "минус":
В частности,
Если любые два вектора параллельны, то с любым третьим вектором они образуют смешанное произведение равное нулю.
Если три вектора линейно зависимы (т. е. компланарны, лежат в одной плоскости), то их смешанное произведение равно нулю.
Геометрический смысл — Смешанное произведение по абсолютному значению равно объёму параллелепипеда (см. рисунок), образованного векторами и ; знак зависит от того, является ли эта тройка векторов правой или левой.
Компланарность векторов.
Три вектора (или большее число) называются компланарными, если они, будучи приведенными к общему началу, лежат в одной плоскости
Свойства компланарности
Если хотя бы один из трёх векторов — нулевой, то три вектора тоже считаются компланарными.
Тройка векторов, содержащая пару коллинеарных векторов, компланарна.
Смешанное произведение компланарных векторов . Это — критерий компланарности трёх векторов.
Компланарные векторы — линейно зависимы. Это — тоже критерий компланарности.
В 3-мерном пространстве 3 некомпланарных вектора образуют базис
Линейно зависимые и линейно независимые векторы.
Линейно зависимые и независимые системы векторов.Определение. Система векторов называется линейно зависимой, если существует хотя бы одна нетривиальная линейная комбинация этих векторов, равная нулевому вектору. В противном случае, т.е. если только тривиальная линейная комбинация данных векторов равна нулевому вектору, векторы называются линейно независимыми.
Теорема (критерий линейной зависимости). Для того чтобы система век торов линейного пространства была линейно зависимой, необходимо и достаточно, чтобы, по крайней мере, один из этих векторов являлся линейной комбинацией остальных.
1) Если среди векторов имеется хотя бы один нулевой вектор, то вся система векторов линейно зависима.
В самом деле, если, например, , то, полагая , имеем нетривиальную линейную комбинацию .▲
2) Если среди векторов некоторые образуют линейно зависимую систему, то и вся система линейно зависима.
Действительно, пусть векторы , , линейно зависимы. Значит, существует нетривиальная линейная комбинация , равная нулевому вектору. Но тогда, полагая , получим также нетривиальную линейную комбинацию , равную нулевому вектору.
2. Базис и размерность. Определение. Система линейно независимых векторов векторного пространства называетсябазисом этого пространства, если любой вектор из может быть представлен в виде линейной комбинации векторов этой системы, т.е. для каждого вектора существуют вещественные числа такие, что имеет место равенство Это равенство называется разложением вектора по базису , а числа называютсякоординатами вектора относительно базиса (или в базисе) .
Теорема (о единственности разложения по базису). Каждый вектор пространства может быть разложен по базису единственным образом, т.е. координаты каждого вектора в базисе определяются однозначно.
Главное значение базиса заключается в том, что операции сложения векторов и умножения их на числа при задании базиса превращаются в соответствующие операции над числами – координатами этих векторов. А именно, справедлива следующая
Теорема. При сложении двух любых векторов линейного пространства их координаты (относительно любого базиса пространства) складываются; при умножении произвольного вектора на любое число все координаты этого вектора умножаются на .
Определение. Векторное пространство называется -мерным, если в нем существуют линейно независимых векторов, а любые векторов уже являются линейно зависимыми. При этом число называется размерностьюпространства .
Размерность векторного пространства, состоящего из одного нулевого вектора, принимается равной нулю.
Размерность пространства обычно обозначают символом .
Определение. Векторное пространство называется бесконечномерным, если в нем существует любое число линейно независимых векторов. В этом случае пишут .
Выясним связь между понятиями базиса и размерности пространства.
Теорема. Если – векторное пространство размерности , то любые линейно независимых векторов этого пространства образуют его базис.
Теорема. Если векторное пространство имеет базис, состоящий из векторов, то .