Асинхронные входы триггеров
Непрозрачные триггеры кроме штатных входов - синхровхода С и управляющих входов D, J, K часто дополняют независимыми от них R и S входами. При этом схема строится так, что R и S входы имеют приоритет в своем воздействии на триггер по отношению к штатным входам, т. е. R или S входы устанавливают диктуемое ими состояние триггера независимо от сигналов, поступающих в это время на штатные входы, в том числе и на вход С. Поэтому такие R и S входы называют асинхронными. По окончании асинхронного сигнала установленное им состояние сохраняется вплоть до очередного активного фронта С-сигнала. По этому фронту триггер сработает уже в соответствии с этим установленным состоянием и с действующими в данный момент уровнями на штатных управляющих входах. Как правило, асинхронные входы имеют активный низкий уровень.
Регистры
Параллельные регистры
Параллельные регистры - это устройства, предназначенныедля записи, хранения и выдачи информации, представленной в виде двоичных кодов. Для хранения каждого двоичного разряда в регистре используется одна триггерная ячейка.
Для запоминания многоразрядных слов необходимое число триггеров объединяют вместе и рассматривают как единый функциональный узел-регистр. Если регистр построен на триггерах-защелках, то его называют регистр-защелка. Типовыми внешними связями регистра являются информационные входы D;, вход сигнала записи (или загрузки) С, вход гашения R, выходы триггеров Q. В упрощенном варианте регистр может не иметь входа гашения и инверсных выходов.
На рис. 4.6 показана схема четырехразрядного регистра, выполненного на ИМС К155ТМ5 и К155ЛИ1.
При подаче управляющего сигнала у1=1 информация по входам X1—Х4 записывается одновременно в соответствующие разряды четырех D-триггеров. При y1=y2=0 информация хранится в регистре памяти, а при y2=1 происходит параллельное считывание информации.
Рис.4.6. Четырехразрядный параллельный регистр
Условным изображением регистра по рис. 4.7, а пользуются тогда, когда на схеме необходимо показать каждый вход и выход данных. Если же тракт данных рассматривается как единое, укрупненное понятие - шина данных, то пользуются обозначением, показанным на рис 4.7, б.
а) б)
Рис. 4.7. Условное обозначение регистра
Выпускаемые промышленностью регистры иногдаобъединяют на кристалле микросхемы с другими узлами, в паре с которыми регистры часто используются в схемах цифровой аппаратуры. Пример такого комплексного узла - микросхема многорежимного буферного регистра (МБР) К589ИР12, основу которой составляет 8-разрядный регистр-защелка с входами DO—D7, С, R и восемью выходами Q0—Q7, снабженными усилителями мощности (буферами) с тремя состояниями выхода. Кроме того, в состав микросхемы входят несколько элементов управления. Усилители с тремя состояниями выхода имеет и 4-разрядный регистр К155ИР15, построенный на непрозрачных триггерах без свойств захвата или проницаемости, т. е. управляемых строго фронтом.
Регистровая память
Существуют микросхемы, в которых регистр объединен с входным мультиплексором, позволяющим принимать входные данные с двух и более направлений, выбираемых сигналами на адресных входах микросхемы. Объединяют регистр и с выходным демультиплексором, позволяющим передавать содержимое регистра на различные направления.
Сразу несколько регистров содержат микросхемы регистровой памяти (register memory, register file, сверхоперативная память). Входы Di регистров подключены к общей входной шине данных (data in). Вход загрузки требуемого регистра выбирается дешифратором записи на основании поступающего на его вход адреса записи (write address), т. е. кода номера загружаемого регистра. Запись данных, присутствующих на шине, происходит в момент поступления сигнала разрешения записи (write enable).
Выходы регистров мультиплексором подключаются к выходной шине (data out). Номер регистра, с которого происходит чтение, определяет код адреса чтения (read address). Выдачу данных разрешает сигнал разрешения чтения (read enable).
Поскольку дешифрация адреса записи и адреса чтения производится двумя независимыми узлами, имеющими автономные адресные входы, регистровая память может одновременно записывать число в один из регистров и читать число из другого.
Микросхемы регистровой памяти легко наращиваются по разрядности и допускают наращивание по числу регистров. Они разработаны для построения блоков регистров общего назначения (РОН) и других специализированных блоков памяти небольшого объема, предназначенных для временного хранения исходных данных и промежуточных результатов в цифровом устройстве.
По мере увеличения числа регистров памяти разработчики отказываются от независимой адресации регистров при записи и чтении. Остается лишь один комплект адресных входов и один дешифратор адреса, которые используются и при записи, и при считывании. Такую схему регистровой памятью уже не называют. По ЕСКД она обозначается RAM (random access memory, т. е. память с произвольным доступом). Используются также термины: запоминающее устройство с произвольной выборкой (ЗУПВ), оперативное запоминающее устройство (ОЗУ), оперативная память, а иногда - просто память. В микросхемах ЗУПВ ввод и вывод данных при записи и чтении могут осуществляться через одни и те же выводы корпуса за счет использования в тракте считывания элементов с тремя состояниями выхода или с открытым коллектором. Режимы работы микросхемы запись, чтение и хранение задаются комбинациями сигналов на ее входах управления. Если для ввода данных при записи и вывода их при чтении используются различные выводы корпуса (входы Di и выходы Qi), то режим хранения может быть совмещен с режимом чтения.
Микросхемы ОЗУ малой емкости часто выпускаются в составе распространенных серий. Они имеют входы адреса Аj, входы данных Di ; вход режима W/R: запись или чтение; выходы данных Qi; вход (или несколько конъюнктивных входов) разрешения Е, чаще называемый выбор кристалла ВК, выбормикросхемы ВМ или CS (chip select). Такую микросхему можно рассматривать как группу регистров, дешифратор для их выборки, цепи записи в регистры и считывания с них. Примерами подобных ИМС могут служить К155РУ2 емкостью 16х4 (16 слов по 4 разряда), К537РУ8 – 2Кх 8. Такие ОЗУ принято называть статическими. Наращивание разрядности и числа хранимых слов производится, как и в случае ПЗУ.
Микросхемы ЗУПВ большей емкости выпускают уже в составе определенных серий БИС памяти. Часто такие микросхемы имеют временную диаграмму с большим числом регламентированных интервалов, адрес может подаваться по частям, есть микросхемы, требующие регенерации хранимых данных (динамические ОЗУ - раздел 5).
Сдвигающие регистры
Сдвигающий, или сдвиговый регистр (shift register) это регистр, содержимое которого при подаче управляющего сигнала СДВИГ может сдвигаться в сторону старших или младших разрядов. Схема сдвигающего регистра из цепочки непрозрачных триггеров показана на рис. 4.8, а, а условное обозначение нарис.4.8, б.
а) б)
Рис.4.8. Сдвигающий регистр
Пусть на рисунке триггер Q0 – младший , Qm-1 – старший; вход каждого триггера (кроме Q0) подключен к выходу соседнего младшего триггера. Когда на все С входы триггеров поступает активный спад сигнала Shift, выход каждого триггера принимает состояние своего младшего соседа и, таким образом, информация, содержащаяся в регистре, сдвигается на один разряд в сторону старших разрядов, влево. Триггер Q0 принимает при этом состояние последовательного входа DS (data serial). Информация, поступившая на вход DS во время какого-либо такта, появится на выходе Qm-1 через m тактов.
Существенно, что в схеме использованы именно непрозрачные триггеры. Если поставить прозрачные защелки, то при активном уровне сигнала Shift все триггеры становятся прозрачными, и сигнал DS успеет пройти столько триггеров, сколько позволит длительность сигнала Shift .
Часто требуются более сложные регистры: с параллельной синхронной записью информации, реверсивные, с параллельно-последовательной записью.Такие регистры называются универсальными. Примером такого регистра служит ИМС К155ИР11. Регистр может работать в четырех режимах: параллельное занесение данных, сдвиг влево, сдвиг вправо, хранение данных.
Применения сдвиговых регистров очень разнообразны.
В арифметике сдвиг числа на один разряд влево соответствует умножению его на 2, сдвиг вправо – делению пополам.
В аппаратуре передачи данных универсальные регистры преобразуют параллельный код в последовательный и обратно. Передача данных последовательным кодом по сравнению с передачей параллельным существенно экономит число линий связи. Это покупается ценой увеличения времени обмена.
Счетчики
Общие понятия
Счетчик - это устройство для подсчета числа входных сигналов.
Как операционный элемент счетчик реализует преобразование число- импульсного кода в позиционный по некоторому основанию системы счисления. В ЭВМ счетчики используются для образования последовательности адресов команд, для счета количества циклов выполнения операций и т.д.
С точки зрения теории автоматов, счетчик - это цифровой автомат, внутреннее состояние которого является функцией количества поступивших входных сигналов.
Количество переключающих сигналов, которое надо подать на вход счетчика для того чтобы счетчик вернулся в исходное состояние, равное числу состояний счетчика, называется коэффициентом пересчета или модулем счетчика – Ксч . Счетчик называется двоичным, если Ксч = 2m, где т - целое число,m>0, и десятичным, еслиКсч = 10p , где р - целое число, р > 0. Счетчики чаще всего строятся на триггерах различных типов, которые являются элементарными счетчиками с модулем 2.
Состояние счетчика в любой момент времени определяется кодом Q , который зафиксирован на его триггерах. Задать правила работы счетчика - значит тем или иным способом определить функцию Qn, = f(n), при п =0,1,2 ... Ксч , где Qn - состояние счетчика после n-го входного переключающего сигнала, n-номер входного переключающего сигнала. Очевидно, что Qp = Qp + Ксч при любом n .
Любой счетчик с модулем Ксч может быть использован как делитель частоты входных сигналов с коэффициентом деления Ксч .
По порядку изменения состояний могут быть счетчики с естественным и произвольным порядком счета. В первых счетчиках значение кода каждого последующего состояния отличается на 1 от кода предыдущего состояния.
По способу переключения триггеров во время счета счетчики делятся на асинхронные и синхронные. Первые называются еще счетчиками с последовательным переносом, т.к. переход каждого триггера из одного состояния в противоположное происходит последовательно во времени. Входной переключающий сигнал непосредственно воздействует лишь на первый триггер, и каждый триггер вырабатывает переключающий сигнал для следующего соседнего триггера.
Синхронные счетчики называются еще счетчиками с параллельным переносом, т.к. в них входной переключающий сигнал непосредственно воздействует на все триггеры счетчика, что обеспечивает одновременность переходов триггеров.
Асинхронные счетчики
Рис. 4.9. Схема (а) и временные диаграммы (6) двоичного асинхронного суммирующего счетчика
На рис. 4.9, а изображен простейший способ включения триггеров, реализующий последовательный суммирующий счетчик. Показан трехразрядный счетчик с коэффициентом пересчета Ксч = 23 = 8, Следовательно, после подачи на вход восьми импульсов счетчик возвратится к исходному состоянию. Будем говорить, что подача на вход счетчика числа импульсов, превышающего Ксч -1 (в данном примере 7 ), вызывает переполнение счетчика.
Последовательный характер работы является причиной двух недостатков последовательного счетчика: меньшая скорость счета по сравнению с параллельными счетчиками и возможность появления ложных сигналов на выходе схемы.
Допустимая скорость счета в счетчиках обоих типов определяется максимальной скоростью переключения одного триггера.
Определяя максимальную скорость счета последовательного счетчика, следует учитывать наиболее неблагоприятный случай изменения состояния всех mтриггеров. Суммарную продолжительность переходного процесса можно определить как сумму времен запаздывания отдельных элементов, соединяющих триггеры, и времен срабатывания всех триггеров. Найденное таким образом максимальное время перехода счетчика из одного состояния и другое следует считать предельным. Обычно реальное время перехода меньше предельного, так как в ряду последовательно включенных триггеров данный триггер начинает переход из одного состояния в другое еще до окончания переходного процесса в возбуждающем его элементе.
Последовательный характер переходов триггеров счетчика является источником ложных сигналов на его выходах. Например, в счетчике, ведущем счет в четырехразрядном двоичном коде с «весами» 8-4-2-1, при переходе от числа 0111 к числу 1000 на выходе появится следующая последовательность сигналов:
0111 ->0110 ->0100 ->0000 ->1000.
Это означает, что при переходе из состояния 7 в состояние 8 на выходах счетчика на короткое время появятся состояния 6; 4; 0. Эти дополнительные состояния могут вызвать неправильную работу других устройств.
Синхронные счетчики
С целью уменьшения времени протекания переходных процессов схему, показанную на рис. 4.9, а, можно реализовать в варианте с подачей входных импульсов одновременно на все триггеры. В этом случае каждый триггер вырабатывает для всех последующих лишь сигналы управления, являющиеся логической функцией состояния счетчика и определяющие конкретные триггеры, которые изменяют состояние при данном входном импульсе. Принцип формирования этих сигналов следует из временной диаграммы на рис.4.9,б : триггер меняет состояние при поступлении очередного счетного импульса , если все предыдущие триггеры находились в состоянии 1. Отсюда и следует схема синхронного счетчика, показанная на рис.4.10.
Рис. 4.10 Четырехразрядный синхронный счетчик
Быстродействие счетчика характеризуется разрешающим временем, т.е. минимальным временным интервалом между входными сигналами, при котором счетчик еще правильно функционирует. Максимальная частота счета Fmax связана с разрешающим временем Тразр простым соотношением: Fmax = Т -1разр . Очевидно, что быстродействие синхронных счетчиков при прочих равных условиях всегда выше, чем асинхронных.
Интегральные счетчики.
Интегральный двоичный асинхронный счетчик К155И.Е5 (рис.4.11) состоит из счетчика на 2 (триггер T1) и счетчика на 8 (триггеры Т2-Т4), соединение которых исходно отсутствует. Установка "0" производится, когда на входах R1 и R2 одновременно "1". Во время работы хотя бы на одном из входов должен быть "0". Для получения 4-х разрядного счетчика внешней перемычкой соединяют выход Q0 со входом C2.
Десятичные счетчики строят обычно на основе четырехразрядных двоичных счетчиков. Для того чтобы уменьшить Ксч четырехразрядного счетчика с 16 до 10, вводят дополнительные логические связи. При этом в зависимости от вида логической связи одним и тем же десятичным числам в разных счетчиках могут соответствовать различные двоичные кодовые комбинации или, иначе говоря, счетчики работают в различных двоично-десятичных кодах.
Рис. 4.11. Структура счетчика К155ИЕ5
Схема на рис.4.12 соответствует десятичному счетчику К 155 ИЕ2,работающему в коде 8-4-2-1. Счетчик состоит из счетчика на 2 (триггер TI) и счетчика на 5 (триггеры Т2-Т4), соединение которых исходно отсутствует. Для образования десятичного счетчика выводы Q0 и C2 соединяются между собой. Счетчик имеет входы нетактируемой установки в "0" (0000) и в "9" (1001) - выводы R1,R2 и S1,S2. Во время счета хотя 6ына одной из каждой пары входов должен быть "0".
Рис. 4.12. Структура счетчика К155ИЕ2
Условные обозначения асинхронных счетчиков К155ИЕ 5, К155ИЕ 2 и синхронных счетчиков К155ИЕ 7 и К155ИЕ 6 показаны на рис.4.13
Рис.4.13. Условные обозначения счетчиков.
К155ИЕ7. интегральный реверсивный двоичный синхронный счетчик имеет два счетных входа: вход суммирования +1 и вход вычитания –1.
Если все триггеры находятся в состоянии "1", то при приходе импульса на вход суммирования (+1) формируется сигнал "переноса" ( ( 15 ). Импульс на входе (-1), если все триггеры находятся в состоянии "0", формирует сигнал "заема" ( 0). Эти сигналы используются для увеличения разрядности счетчиков.
К155ИЕ6 –синхронный реверсивный десятичный счетчик, работающий в коде 8-4-2-1. Кроме двоичных реверсивных межтриггерных связей, в счетчике KI55 ИЕ б существуют дополнительные логические цепи, обеспечивающие недвоичный переход от кода 1001 к коду 0000 при суммировании и обратный переход при вычитании.
Сброс счетчиков KI55 ИЕ 6 и К155 ИЕ 7 производится сигналом "1", подаваемом на вход R Во время счета на этом выводе должен быть "0".
В обоих счетчиках триггеры имеют входы предварительной установки D, тактируемые потенциалом. В режиме счета сигнал на входе С (вывод 11) равен "1", цепи предустановки отключены. Если на входе С "0", то триггеры устанавливаются в состояния, соответствующие сигналам, поданным на входы D0 , D1 , D2 , D3. Естественно, что сигнал переноса в счетчике К 155 ИЕ 6 возникает на выходе ( 9) при состоянии счетчика 1001 и поступлении следующего счетного импульса.