Понятие релятивистской массы
После того, как Эйнштейн предложил принцип эквивалентности массы и энергии, стало очевидно, что понятие массы может использоваться двояко. С одной стороны, это та масса, которая фигурирует в классической физике, с другой — можно ввести так называемую релятивистскую массу как меру полной (включая кинетическую) энергии тела[2]. Эти две массы связаны между собой соотношением:
где mrel — релятивистская масса, m — «классическая» масса (равная массе покоящегося тела), v — скорость тела. Введённая таким образом релятивистская масса является коэффициентом пропорциональности между импульсом и скоростью тела[2]:
Аналогичное соотношение выполняется для классических импульса и массы, что также приводится как аргумент в пользу введения понятия релятивистской массы. Введённая таким образом релятивистская масса в дальнейшем привела к тезису, что масса тела зависит от скорости его движения[11].
В процессе создания теории относительности обсуждались понятия продольной и поперечной массы частицы. Пусть сила, действующая на частицу, равна скорости изменения релятивистского импульса. Тогда связь силы и ускорения существенно изменяется по сравнению с классической механикой:
Если скорость перпендикулярна силе, то , а если параллельна, то , где — релятивистский фактор. Поэтому mγ = mrel называют продольной массой, а mγ3 — поперечной.
Утверждение о том, что масса зависит от скорости, вошло во многие учебные курсы и в силу своей парадоксальности приобрело широкую известность среди неспециалистов. Однако в современной физике избегают использовать термин «релятивистская масса», используя вместо него понятие энергии, а под термином «масса» понимая массу покоя. В частности, выделяются следующие недостатки введения термина «релятивистская масса»[3]:
§ неинвариантность релятивистской массы относительно преобразований Лоренца;
§ синонимичность понятий энергия и релятивистская масса, и, как следствие, избыточность введения нового термина;
§ наличие различных по величине продольной и поперечной релятивистских масс и невозможность единообразной записи аналогавторого закона Ньютона в виде
§ методологические сложности преподавания специальной теории относительности, наличие специальных правил, когда и как следует пользоваться понятием «релятивистская масса» во избежание ошибок;
§ путаница в терминах «масса», «масса покоя» и «релятивистская масса»: часть источников просто массой называют одно, часть — другое.
Несмотря на указанные недостатки, понятие релятивистской массы используется и в учебной[12], и в научной литературе. Следует, правда, отметить, что в научных статьях понятие релятивистской массы используется по большей части только при качественных рассуждениях как синоним увеличения инертности частицы, движущейся с околосветовой скоростью.
58. Строение атома. Опыты Резерфорда.
1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.
2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре.
3. Ядра атомов состоят из протонов и нейтронов ( нуклонов). Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.
4. Вокруг ядра по замкнутым орбитам вращаются электроны. Их число равно положительному заряду ядра.
Ядро - это центральная позитивно заряженная часть атома, в которой сосредоточена его масса.
Электрон - частица с негативным зарядом, который условно принят за -1.
Нейтрон - нейтральная частица, не имеющая электрического заряда. Масса нейтрона равна 1 а. е. м.
Протон - положительно заряженная частица, с такой же массой, как и нейтрон. Заряд протона равен заряду электрона и противоположен по знаку.
Число протонов в ядре атома равно числу электронов. Это число определяет заряд ядра атома элемента и его порядковый номер элемента в таблице Менделеева.
При известных условиях нейтрон может превращаться в протон и наоборот.
Атомные массы элементов в периодической таблице являются средним значением из массовых чисел природных смесей из изотопов. Поэтому они не могут, как считал Менделеев, служить главной характеристикой атома и элемента. Такой характеристикой является заряд ядра атома. Он определяет число электронов в нейтральном атоме, которые распределяются вокруг ядра по определенным орбитам и определяют химические свойства атомов. В результате этого было дано новое определение химического элемента и уточнена формулировка периодического закона:
Химический элемент - это совокупность атомов с одинаковым зарядом ядра.
Свойства элементов, а также свойства и формы их соединений находятся в периодической зависимости от заряда ядра атома элемента.
От радиоактивного источника, заключенного в свинцовый контейнер, α-частицы направлялись на тонкую металлическую фольгу. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа. Наблюдения рассеянных α-частиц в опыте Резерфорда можно было проводить под различными углами φ к первоначальному направлению пучка. Было обнаружено, что большинство α-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.
Этот результат был совершенно неожиданным даже для Резерфорда. Его представления находилbcm в резком противоречии с моделью атома Томсона, согласно которой положительный заряд распределен по всему объему атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить α-частицы назад. Электрическое поле однородного заряженного шара максимально на его поверхности и убывает до нуля по мере приближения к центру шара. Если бы радиус шара, в котором сосредоточен весь положительный заряд атома, уменьшился в n раз, то максимальная сила отталкивания, действующая на α-частицу, по закону Кулона возросла бы в n2 раз. Следовательно, при достаточно большом значении n α-частицы могли бы испытать рассеяние на большие углы вплоть до 180°. Эти соображения привели Резерфорда к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром. Так возникла ядерная модель атома. Таким образом, опыты Резерфорда и его сотрудников привели к выводу, что в центре атома находится плотное положительно заряженное ядро, диаметр которого не превышает 10–14–10–15 м. Это ядро занимает только 10–12 часть полного объема атома, но содержит весь положительный заряд и не менее 99,95 % его массы. Веществу, составляющему ядро атома, следовало приписать колоссальную плотность порядка ρ ≈ 1015 г/см3. Заряд ядра должен быть равен суммарному заряду всех электронов, входящих в состав атома.
Квантовые числа электронов
Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел: главного (n), орбитального (l), магнитного (m) и спинового (s). Первые три характеризуют движение электрона в пространстве, а четвертое - вокруг собственной оси.
Главное квантовое число (n). Определяет энергетический уровень электрона, удаленность уровня от ядра, размер электронного облака. Принимает целые значения (n = 1, 2, 3 ...) и соответствует номеру периода. Из периодической системы для любого элемента по номеру периода можно определить число энергетических уровней атома и какой энергетический уровень является внешним.
Пример.
Элемент кадмий Cd расположен в пятом периоде, значит n = 5. В его атоме электроны раcпределены по пяти энергетическим уровням (n = 1, n = 2, n = 3, n = 4, n = 5); внешним будет пятый уровень (n = 5).
Орбитальное квантовое число (l)характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n - 1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, c одинаковыми n и l - под Магнитное квантовое число (m) характеризует положение электронной орбитали в пространстве и принимает целочисленные значения от -I до +I, включая 0. Это означает, что для каждой формы орбитали существует (2l + 1) энергетически равноценных ориентации в пространстве.
Для s- орбитали (l = 0) такое положение одно и соответствует m = 0. Сфера не может иметь разные ориентации в пространстве.
Для p- орбитали (l = 1) - три равноценные ориентации в пространстве (2l + 1 = 3): m = -1, 0, +1.
Для d- орбитали (l = 2) - пять равноценных ориентаций в пространстве (2l + 1 = 5): m = -2, -1, 0, +1, +2.
Таким образом, на s- подуровне - одна, на p- подуровне - три, на d- подуровне - пять, на f- подуровне - 7 орбиталей.
Спиновое квантовое число (s) характеризует магнитный момент, возникающий при вращении электрона вокруг своей оси. Принимает только два значения +1/2 и –1/2 соответствующие противоположным направлениям вращения.
Изучая рассеяние альфа-частиц при прохождении через золотую фольгу, Резерфорд пришел к выводу, что весь положительный заряд атомов сосредоточен в их центре в очень массивном и компактном ядре. А отрицательно заряженные частицы (электроны) обращаются вокруг этого ядра. Эта модель коренным образом отличалась от широко распространенной в то время модели атома Томсона, в которой положительный заряд равномерно заполнял весь объем атома, а электроны были вкраплены в него. Несколько позже модель Резерфорда получила название планетарной модели атома (она действительно похожа на Солнечную систему: тяжелое ядро - Солнце, а обращающиеся вокруг него электроны - планеты).
Рассеивание альфа частиц в веществе.
Альфа-частицы испускались источником, помещенным внутри свинцовой полости. Все альфа-частицы, кроме движущихся вдоль канала, поглощались свинцом. Узкий пучок альфа-частиц попадал на фольгу из золота перпендикулярно к ее поверхности; альфа-частицы, прошедшие сквозь фольгу и рассеянные ею, вызывали вспышки (сцинтилляции)на экране, покрытым веществом, способным светиться при попадании частиц. В пространстве между фольгой и экраном обеспечивается достаточный вакуум, чтобы не происходило рассеяние альфа-частиц в воздухе. Конструкция прибора позволила наблюдать альфа-частицы, рассеянные под углом до 150 градусов.
59. Вероятностное описание – принципиальная особенность микромира.
60. Корпускулярно-волновой дуализм.
Корпускуля́рно-волново́й дуали́зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепцияквантованных полей в квантовой теории поля.
Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла[1].
Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году[2]. Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).
В настоящий момент концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как служила только интерпретацией, способом описать поведение квантовых объектов, подбирая ему аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям (пропагаторная), свободная от использования классических понятий.