Существует два способа роста хряща - внутренний (интерстициальный) и путем наложения (аппозиционный)
Внутренний рост хряща происходит в результате размножения молодых хондроцитов и новообразования изогенных групп клеток.
Аппозиционный рост происходит за счет перихондрия - пролиферации хондробласты глубокого слоя, превращения хондробластов в хондроциты и продукции ими межклеточного вещества.
Физиологическая регенерацияхрящевой ткани происходит благодаря деятельности хондроцитов и хондробластов - выработке ими хондромукоиду, коллагена и эластина, способствуют новообразованию хондринових волокон. С возрастом в хрящевой ткани уменьшается содержание клеточных элементов и увеличивается количество межклеточного матрикса. При этом по мере превращения хондроцитов первого и второго типов на хондроциты третьего типа в межклеточном веществе хряща снижается количество протеогликанов, хондромукоид замещается альбумоидом, увеличивается содержание коллагеновых волокон.
3. Легкое. Строение и функции ацинуса. Тканевой состав стенки альвеол. Аэрогематический барьер.
Легкиезанимают большую часть грудной клетки и постоянно изменяют свою форму и объем в зависимости от фазы дыхания. Поверхность легкого покрыта серозной оболочкой — висцеральной плеврой. Легкое состоит из системы воздухоносных путей — бронхов (это т.н. бронхиальное дерево) и системы легочных пузырьков, или альвеол, выполняющих роль собственно респираторного отдела дыхательной системы.
Респираторный отдел. Его структурно-функциональная единица – ацинус.12-18 ацинусов образуют легочную дольку. Ацинус начинается в респираторной бронхиоле 1 порядка. В ее стенке впервые появляются альвеолы. Респираторные бронхиолы I порядка
подразделяется на бронхиолы II порядка, а затем III порядка. Респираторные бронхиолы 3 порядка продолжаются в альвеолярные ходы, которые также дихотомически делятся 2-3 раза и заканчиваются альвеолярными мешочками – это слепое расширение в конце ацинусов, в которых имеются несколько альвеол.
Альвеолыявляются основной структурной единицей ацинуса. Альвеола представляет собой пузырек, стенка которого образована базальной мембраной, на которой располагаются клетки альвеолярного эпителия. Имеются 2 разновидности альвеолоцитов: респираторные и секреторные.
Респираторные альвеолоциты– уплощенные клетки со слабо развитыми органеллами, расположенными около ядра. Клетки распластаны на базальной мембране. Через их цитоплазму осуществляется газообмен.
Секреторные альвеолоциты– более крупные клетки, расположенные преимущественно в устье альвеолы, в них хорошо развиты органеллы, они вырабатывают сурфактант – это пленка с типичным строением клеточной мембраны. Она выстилает всю внутреннюю поверхность альвеолы. Сурфактант препятствует слипанию стенок альвеол, способствует их расправлению во время вдоха, выполняет защитную функцию – не пропускает микробы, антигены. Поддерживает определенную влажность внутри альвеолы..
Снаружи к альвеоле прилежит кровеносный капилляр. Его базальная мембрана соединяется с базальной мембраной альвеолы. Структуры, отделяющие просвет альвеолы от просвета капилляров образуют аэрогематический барьер(воздушно-кровяной барьер). В его состав входят: сурфактант, респираторный альвеоцит, базальная мембрана альвеолы и базальная мембрана капилляра и эндотелиоцит капилляра. Этот барьер тонкий – 0,5 мкм, через него проникают газы. Это достигается тем, что напротив тонкого участка респираторного альвеолоцита располагается неядросодержащая часть эндотелиоцита. В межальвеолярных перегородках содержатся тонкие эластиновые волокна, редко (в старости больше) коллагеновые, большое количество капилляров, а в устье альвеолы могут быть 1-2 гладких миоцита (выталкивают воздух из альвеолы).
Макрофаги и Т-лимфоциты могут выходить из капилляра в просвет альвеол и выполнять защитную иммунобиологическую функцию. Альвеолярные макрофаги являются первыми иммунологически активными клетками, фагоцитирующими бактериальные и небактериальные антигены. Выполняя функцию вспомогательных иммунных клеток, они осуществляют презентацию антигена Т-лимфоцитом и обеспечивают тем самым образование антител В-лимфоцитов.
Билет 27
1. Образование, строение и функции зародышевых оболочек и провизорных органов у человека.
Образование эктодермы и энтодермыКлетки зародышевого диска делятся в тангенциальной плоскости, то есть происходит его расщепление (деляминация) на два слоя. В результате этого зародышевый диск уже состоит из двух слоев клеток. Верхний слой клеток — это эктодерма (эпибласт), нижний слой — энтодерма (гипобласт)
Образование мезодермыпроисходит из клеток первичной полоски. Клетки первичной полоски, образовавшейся в эктодерме, прорастают в пространство между экто- и энтодермой и там разрастаются, образуя мезодерму.
Дифференцировка мезодермы и образование мезенхимыСразу после своего образования мезодерма подразделяется на два
главных отдела (Рис. Л-С, Т6): сомиты — спинной отдел и спланхнотом — брюшной отдел. Сомиты разделяются на три части: дерматом, склеротом, миотом. Спланхнотом делится на висцеральный и париетальный листки, между которыми находится вторичная полость тела — целом. Висцеральный и париетальный листки дают начало висцеральным и париетальным серозным оболочкам. Из мезенхимы развивается вся соединительная ткань.
название | образование | строение | функции |
амнион | образуется путем выселения клеток из эктодермы (эпибласта), Образуемая этими клетками жидкость раздвигает выселившиеся клетки эктодермы с формированием одной полости, заполненной жидкостью | внезародышевая эктодерма и внезародышевая мезенхима | образует водную среду вокруг зародыша, защита от механических воздействий, защита от инфекций, выведение продуктов обмена плода |
желточный мешок | образуется путем обрастания энтодермой (гипобластом) внутренней поверхности желточного пузырька | внезародышевая энтодерма и внезародышевая мезенхима | образование первых клеток крови и кровеносных сосудов (мезенхима), образование первичных половых клеток (энтодерма) |
аллантоис | образуется как вырост из вентральной стенки заднего отдела первичной кишки | внезародышевая энтодерма и внезародышевая мезенхима | по аллантоису растут сосуды к формирующейся плаценте |
плацента | образуется последовательно в 3 этапа: трофобласт- хорион-плацента ОБРАЗОВАНИЕ ТРОФОБЛАСТА- после первого деления дробления образуется первая клетка трофобласта, потом она многократно делится, и формируются первичные ворсинки трофобласта ОБРАЗОВАНИЕ ХОРИОНА- к трофобласту подрастает внезародышевая мезенхима и возникает хорион (вторичные ворсинки хориона), а затем к ним подрастают кровеносные сосуды и возникают третичные ворсинки хориона ОБРАЗОВАНИЕ ПЛАЦЕНТЫ- хорион соединяется с decidua basalis и образуется плацента, так как плацента - это хорион + decidua basalis | первичные ворсинки трофобласта- образованы только клетками трофобласта хорион- состоит из трофобласта и внезародышевой мезенхимы вторичные ворсинки хорионасостоят из трофобласта и внезародышевой мезенхимы третичные ворсинки хорионасостоят из трофобласта, внезародышевой мезенхимы и кровеносных сосудов плацента- состоит из хориона (плодная часть) и decidua basalis (материнская часть) | Питание и газообмен плода, выведение продуктов обмена плода, регулирование поступления веществ от матери к плоду, иммунологическая защита плода, выработка гормонов и биологически- активных веществ, необходимых для развития зародыша и для течения беременности |
2. Нейроглия. Классификация, источники развития. Строение и функции различных типов клеток глии.
Нейроглия. В процессе развития тканей нервной системы из материала нервной трубки, а также нервного гребня происходит развитие глиобластов. Результатом глиобластической дифференцировки является образование нейроглиальных клеточных дифферонов. Они выполняют опорную, разграничительную, трофическую, секреторную, защитную и другие функции. Нейроглия создает постоянную, стабильную внутреннюю среду для нервной ткани, обеспечивая тканевый гомеостаз и нормальное функционирование нервных клеток. По строению и локализации клеток различают эпендимную глию, астроцитную глию и олигодендроглию. Нередко эти разновидности глии объединяют обобщенным понятием "макроглия".
Эпендимная глияимеет эпителиоидное строение. Она выстилает центральный канал спинного мозга и мозговые желудочки. В качестве эпендимного эпителия эта разновидность нейроглии относится к нейроглиальному типу эпителиальных тканей. Выпячивания мягкой оболочки мозга в просвет его желудочков покрыты эпендимоцитами кубической формы. Они принимают участие в образовании спинномозговой жидкости.
Астроцитная глияявляется опорной структурой (каркасом) спинного и головного мозга. В астроцитной глии различают два вида клеток: протоплазматические и волокнистые астроциты. Первые из них располагаются преимущественно в сером веществе мозга. Они имеют короткие и толстые, часто распластанные отростки. Вторые — находятся в белом веществе мозга. Волокнистые астроциты имеют многочисленные отростки, содержащие аргирофильные фибриллы. За счет этих фибрилл формируются глиальные остов и разграничительные мембраны в нервной системе, пограничные мембраны вокруг кровеносных сосудов и так называемые "ножки" астроцитных отростков на кровеносных сосудах.
Олигодендроглиясостоит из различно дифференцированных клеток — олигодендроцитов. Они плотно окружают тела нейронов и их отростки на всем протяжении до концевых разветвлений. Есть несколько видов олигодендроцитов. В органах центральной нервной системы олигодендроглия представлена мелкими отростчатыми клетками, называемыми глиоцитами. Вокруг тел чувствительных нейронов спинномозговых ганглиев находятся глиоциты ганглия (мантийные глиоциты).
II. Нейроглиоциты: А. Макроглиоциты:
1. Эпиндимоциты.
2. Олигодендроциты: а) глиоциты ЦНС;
б) мантийные клетки (нейросателлитоциты); в) леммоциты (Шванновские клетки);
г) концевые глиоциты.
3. Астроциты:
а) плазматические астроциты (синоним: коротколучистые астроциты); б) волокнистые астроциты (синоним: длиннолучистые астроциты).
Б. Микроглиоциты (синоним: мозговые макрофаги).
А. Макроглиоциты.
I. Эпиндимоциты- выстилают спинномозговой канал, мозговые желудочки. По строению напоминают эпителий. Клетки имеют низкопризматическую форму, плотно прилегают друг к другу, образуя сплошной пласт. На апикальной поверхности могут иметь мерцательные реснички. Другой конец клеток продолжается в длинный отросток, пронизывающий всю толщу головного, спинного мозга. Функция: разграничительная (ликворчмозговая ткань), участвует в образовании и регуляции состава ликвора.
II. Астроциты- отросчатые ("лучистые") клетки, образуют остов спинного и головного мозга.
1) плазматические астроциты - клетки с короткими, но толстыми отростками, содержатся в сером веществе.
2) волокнистые астроциты - клетки с тонкими длинными отростками, находятся в белом веществе ЦНС. Функция астроцитов - опорно-механическая.
III. Олигодендроглиоциты- малоотростчатые глиальные клетки, окружают тела и отростки нейроцитов в составе ЦНС и нервных волокон. Разновидности:
1. Глиоциты ЦНС - окружают тела и отростки нейроцитов в ЦНС.
2. Мантийные клетки (сателлиты) окружают тела нейроцитов в спинальных ганглиях.
3. Леммоциты (Шванновские клетки) - окружают отростки нейроцитов и вхо-дят в состав безмиелиновых и миелиновых нервных волокон.
4. Концевые глиоциты - окружают нервные окончания в рецепторах.
Функции олигодендроглиоцитов: трофика нейроцитов и их отростков; играют определенную роль в процессах возбуждения (торможения) нейроцитов; участвуют в проведении импульсов по нервным волокнам; регуляция водно-солевого баланса в нервной системе; участие в рецепции раздражителей; защитная (изоляция).
Б. Микроглиоциты. Источник развития: в эмбриональном периоде - из мезенхимы; в последующем могут образоваться из клеток крови моноцитарного ряда. Микроглиоциты - мелкие отростчатые, паукообразной формы клетки, способны к амебоидному движению. В цитоплазме имеют лизосомы и митохондрии. Функция: защитная, путем фагоцитоза, поэтому их называют мозговыми макрофагами, т.е. микроглиоциты относятся к макрофагической системе организма.
3. Щитовидная железа. Источники развития, строение тироцитов. Особенности секреторного процесса в этих клетках и его регуляция.
Строение щитовидной железы
поступление предшественников тироглобулина (аминокислот, углеводов, ионов, воды, йодидов), приносимых из кровеносного русла
в тироциты;
синтез фермента тиропероксидазы, окисляющей йодиды и обеспечивающей их соединение с тиреоглобулином на поверхности тироцитов и в полости фолликула и образование коллоида;
синтез полипептидных цепочек самого тироглобулинав гранулярной эндоплазматической сети и их гликозилирование (т.е. соединение с нейтральными сахарами и сиаловой кислотой) с помощью тиропероксидазы (в аппарате Гольджи).
Фаза выведения включаетрезорбцию тироглобулина из коллоида путем пиноцитоза и его гидролиз с помощью лизосомных протеаз с образованием гормонов тироксина и трийодтиронина, а также выведение этих гормонов через базальную мембрану в гемокапилляры и лимфокапилляры.
Второй вид эндокриноцитов щитовидной железы - парафолликулярные клетки, или C-клетки, или же кальцитониноциты. Это клетки нейрального происхождения. Их главная функция - выработка тиреокальцитонина, снижающего уровень кальция в крови.
Во взрослом организме парафолликулярные клетки локализуются в стенке фолликулов, залегая между основаниями соседних тироцитов, но не достигают своей верхушкой просвета фолликула. Кроме того, парафолликулярные клетки располагаются также в межфолликулярных прослойках соединительной ткани. По размерам парафолликулярные клетки крупнее тироцитов, имеют округлую, иногда угловатую форму. Парафолликулярные клетки осуществляют биосинтез пептидных гормонов -кальцитонинаи соматостатина, а также участвуют в образовании нейроаминов (норадреналина и серотонина) путем декарбоксилирования соответствующих аминокислот-предшественников.
Билет 28
1. Сперматогенез и овогенез. Сравнительная характеристика этих процессов.
Во-первых, это касается продолжительности периода митотического размножения сперматогоний.
Во-вторых, у индивидуумов женского пола первое деление мейоза начинается в период внутриутробного развития, впервые завершается к моменту полового созревания, а в последний - накануне менопаузы . У мальчиков мейоз начинается только с достижением половой зрелости и сохраняется в течение всей половой зрелости мужчины.
В-третьих, образование зрелых половых клеток у женщин происходит циклически с периодом примерно 28 дней, в то время как у мужчин это "происходит непрерывно.
В-четвертых, в отличие от сперматогоний, каждая из которых в результате мейоза дает четыре функционально полноценных сперматозоида, из оогонии получается только одна яйцеклетка. После первого деления мейоза в одну дочернюю клетку отходит большая часть цитоплазмы, а во вторую, называемую направительным тельцем, малая. Аналогично происходит во время второго делениямейоза. Направительные тельца дегенерируют.
В-пятых, мужская и женская половые клетки сильно отличаются по строению и функции: сперматозоид - маленькая подвижная клетка, очень богатая митохондриями, которые снабжают его энергией для движения, в то время как яйцеклетка - самая большая клетка человеческого организма (диаметр 150 - 200 мкм), содержащая не только значительные запасы питательных веществ, но и матричные РНК, которые будут использоваться на ранних стадиях развития зародыша. Яйцеклетка окружена питающими ее фолликулярными клетками и образует специализированную структуру - фолликул (граафов пузырек) .
2. Соединительные ткани с особыми свойствами. Происхождение, локализация, строение и функции.
К соединительным тканям со специальными свойствами (СТСС) относятся:
1. Ретикулярная ткань.
2. Жировая ткань (белый и бурый жир).
3. Пигментная ткань.
4. Слизисто-студенистая ткань.
В эмбриогенезе все соединительные ткани СТСС образуются из мезенхимы. СТСС как и все ткани внутренней среды состоят из клеток и межклеточного вещества, но клеточный компонент представлен, как правило, 1 популяцией клеток.
1.Ретикулярная ткань- составляет основу кроветворных органов, в небольшом количестве имеется вокруг кровеносных сосудов. Состоит из ретикулярных клеток и межклеточного вещества, состоящего из основного вещества и ретикулярных волокон. Ретикулярные клетки - крупные отростчатые клетки с оксифильной цитоплазмой, соединяясь друг с другом отростками образуют петлистую сеть. Переплетающиеся ретикулярные волокна также образуют сеть. Отсюда и название ткани - "ретикулярная ткань" - сетчатая ткань. Ретикулярные клетки способны к фагоцитозу, вырабатывают составные компоненты ретикулярных волокон. Ретикулярная ткань неплохо регенерирует за счет деления ретикулярных клеток и выработки ими межклеточного вещества.
Функции:
опорно-механическая (являются несущим каркасом для созревающих клеток крови); трофическая (обеспечивают питание созревающих клеток крови);
фагоцитоз погибших клеток, инородных частиц и антигенов;
создают специфическое микроокружение, определяющее направление дифференцировки кроветворных клеток.
2. Жировая ткань- это скопление жировых клеток. В соответствие наличию 2 типов жировых клеток различают 2 разновидности жировой ткани:
белый жир (скопление белых жировых клеток) - имеется в подкожной жировой клетчатке, в сальниках, вокруг паренхиматозных и полых органов. Функции белого жира: запас энергетического материала и воды; механическая защита; участие в терморегуляции (теплоизоляция).
бурый жир (скопление бурых жировых клеток) - имеется у животных впадающих в зимнюю спячку, у человека только в период новорожденности и в раннем детском возрасте. Функции бурого жира: участие в терморегуляции - жир сграет в митохондриях липоцитов, тепло выделяющееся при этом согревает кровь в проходящих рядом капиллярах.
3. Пигментная ткань- скопление большого количества меланоцитов. Имеется в определенных участках кожи (вокруг сосков молочных желез), в сетчатке и радужке глаза, и т.д. Функция: защита от избытка света, УФЛ.
4. Слизисто-студенистая ткань- имеется только у эмбриона (под кожей, в пупочном канатике). В этой ткани очень мало клеток (мукоциты), преобладает межклеточное вещество, а в нем - преобладает студенистое основное вещество, богатое гиалуроновой кислотой. Такая особенность строения обуславливает высокий тургор данной ткани.
Функция: механическая защита нижележащих тканей, препятствует пережатию кровеносных сосудов пуповины.
3. Спинной мозг. Источники развития, строение. Рефлекторная дуга собственного аппарата. Понятие о лавинообразном нарастании импульса.
Снаружи покрыт мягкой мозговой оболочкой, которая содержит кровеносные сосуды, внедряющиеся в вещество мозга.
Условно выделяют 2 половины, которые разделены передней срединной щелью и задней срединной соединительнотканной перегородкой. В центре находится центральный канал спинного мозга, который находится в сером веществе, выстлан эпендимой, содержит спинномозговую жидкость, находящуюся в постоянном движении.
По периферии располагается белое вещество, где находятся пучки нервных миелиновых волокон, которые образуют проводящие пути. Они разделены глиально-соединительнотканными перегородками. В белом веществе различают передний, боковой и задний канатики.
В средней части находится серое вещество, в котором выделяют задние, боковые (в грудных и поясничных сегментах) и передние рога. Половины серого вещества соединяются передней и задней спайкой серого вещества. В сером веществе имеются в большом количестве глиальные и нервные клетки.
Нейроны серого вещества делятся на:
1)Внутренние. Полностью (с отростками) располагаются в пределах серого вещества. Являются вставочными и находятся в основном в задних и боковых рогах.
Бывают:
а) Ассоциативные. Располагаются в пределах одной половины.
б) Комиссуральные. Их отростки уходят в другую половину серого вещества.
2) Пучковые нейроны. Располагаются в задних рогах и в боковых рогах. Образуют ядра или располагаются диффузно. Их аксоны заходят в белое вещество и образуют пучки нервных волокон восходящего направления. Являются вставочными.
3) Корешковые нейроны. Находятся в латеральных ядрах (ядрах боковых рогов), в передних рогах. Их аксоны выходят за пределы спинного мозга и образуют передние корешки спинного мозга.
В поверхностной части задних рогов располагается губчатый слой, где содержится большой число мелких вставочных нейронов.
Глубже данной полоски находится желатинозное вещество, содержащее в основном глиальные клетки, мелкие нейроны (последние в малом количестве).
В средней части находится собственное ядро задних рогов. Оно содержит крупные пучковые нейроны. Их аксоны идут в белое вещество противоположной половины и образуют tr. spinocerebellaris anterior и tr. spinothalamicus posterior. Клетки ядра обеспечивают экстероцептивную чувствительность.
У основания задних рогов располагается грудное ядро (столб Кларка-Штилинга), которое содержит крупные пучковые нейроны. Их аксоны идут в белое вещество этой же половины и участвуют в образовании tr. spinocerebellaris posterior и tr. spinothalamicus posterior. Клетки данного ядра обеспечивают проприоцептивную чувствительность.
В промежуточной зоне находятся латеральное и медиальное ядра. Медиальное промежуточное ядро содержит крупные пучковые нейроны. Их аксоны идут в белое вещество этой же половины и образуют tr. spinocerebellaris anterior. Обеспечивает висцеральную чувствительность.
Латеральное промежуточное ядро относится к вегетативной нервной системе. В грудном и верхнепоясничном отделах является симпатическим ядром, а в сакральном – ядром парасимпатической нервной системы. В нем содержится вставочный нейрон, который является первым нейроном эфферентного звена рефлекторной дуги. Это корешковый нейрон. Его аксоны выходят в составе передних корешков спинного мозга.
В передних рогах находятся крупные двигательные ядра, которые содержат двигательные корешковые нейроны, имеющие короткие дендриты и длинный аксон. Аксон выходит в составе передних корешков спинного мозга, а в дальнейшем идут в составе периферического смешанного нерва, представляет двигательные нервные волокна и закачивается на периферии нервно-мышечным синапсом на скелетных мышечных волокнах. Являются эффекторными. Образует третье эффекторное звено соматической рефлекторной дуги.
В передних рогах выделяют медиальную группу ядер. Она развита в грудном отделе и обеспечивает иннервацию мышц туловища.
Латеральная группа ядер находится в шейном и поясничном отделах и иннервирует верхние и нижние конечности.
В сером веществе спинного мозга находится большое количество диффузных пучковых нейронов (в задних рогах). Их аксоны идут в белое вещество и сразу же делятся на две ветви, которые отходят вверх и вниз. Ветви через 2-3 сегмента спинного мозга обратно возвращаются в серое вещество и образуют синапсы на двигательных нейронах передних рогов. Данные клетки образуют собственный аппарат спинного мозга, который обеспечивает связь между соседними 4-5 сегментами спинного мозга, за счет чего обеспечивается ответная реакция группы мышц (эволюционно выработанная защитная реакция).
Белое вещество содержит в основном миелиновые нервные волокна. Они идут пучками и образуют проводящие пути спинного мозга. Они обеспечивают связь спинного мозга с отделами головного мозга. Пучки разделяются глиальными перегородками. При этом различают восходящие пути, которые несут афферентную информацию от спинного мозга к головному. Эти пути располагаются в задних канатиках белого вещества и периферических отделах боковых канатиков. Нисходящие проводящие пути это эффекторные пути, они несут информацию от головного мозга к периферии. Располагаются в передних канатиках белого вещества и во внутренней части боковых канатиков.
«воротная» теория Р. Мелзака.Известно, что задние рога спинного мозга содержат желатинозную субстанцию Роландо. Центральные отростки рецепторных нейронов поверхностной и глубокой чувствительности отдают коллатерали к клеткам желатинозной субстанции (вставочным нейронам), аксоны которых образуют собственные пучки спинного мозга (задние, боковые, передние). При раздражении даже единичных рецепторов происходит вовлечение десятков и сотен ассоциативных нейронов, т. е. возникает лавинообразное нарастание нервных импульсовв сегментарном аппарате спинного мозга. Раздражение даже ограниченного числа, скажем, интероцепторов способно вызвать в зоне ассоциативных нейронов заднего рога лавинообразное нарастание нервных импульсов, вызывающих возбуждение нейронов иной модальности, «ответственных», в частности, за восприятие поверхностных (болевых) импульсов.
При расхождении, или дивергенции, путей каждый афферентный нейрон посредством множества концевых разветвлений аксонов контактирует с большим числом эфферентных нейронов непосредственно или через промежуточный нейрон. Это создаѐт предпосылки для активирования одним афферентным нейроном множества близких к нему и отдалѐнных эфферентных нейронов и связанных с ними рефлексов в определѐнной последовательности
Установлено, что на теле и дендритах каждого нейрона ретикулярной формации и коры головного мозга существуют синаптические контакты множества др. нейронов, активируемых раздражителями разных модальностей и оказывающих как возбуждающее, так и тормозящее влияние на «общий путь».
Билет 29
1. Типы плацент у млекопитающих. Строение и функции плаценты человека.
При формировании плаценты участвуют со стороны плода трофобласт и внезародышевая мезенхима. А со стороны матери - функциональный слой слизистой матки. Трофобласт и внезародышевая мезенхима образуют хорион. Это происходит следующим образом: вначале трофобласт представляет собой полый пузырек из одного слоя клеток, в последующем клетки трофобласта начинают усиленно размножаться и поэтому трофобласт становится многослойным. Причем клетки наружных слоев сливаются друг с другом и образуют симпласт - этот слой называется симпластическим трофобластом; самый внутренний слой трофобласта сохраняет клеточное строение и называется клеточным трофобластом (цитотрофобласт). Параллельно с этим из эмбриобласта выселяются клетки - внезародышевая мезенхима и она покрывает внутреннюю поверхность цитотрофобласта. Эти 3 слоя вместе (симпластический и клеточный трофобласт, внезародышевая мезенхима) назваются хорионом или сосудистой оболочкой.
В дальнейшем симпластический трофобласт по всему периметру хориона образует выросты - I ворсинки хориона; I ворсинки хориона начинают выделят протеолитические ферменты, которые разрушают эпителий матки и через образовавшуюся брешь зародыш внедряется в толщу слизистой матки, т.е. происходит имплантация; эпителий матки за зародышем восстанавливается и поэтому зародыш оказывается замурованным в толще слизистой матки.
Все 3 слоя хориона вместе образуют II ворсинки хориона, которые проникают через стенки кровеносных сосудов слизистой матки и плавают в крови матери, т.е. начинается плацентация. В дальнейшем во II ворсинки хориона врастают сосуды плода и II ворсинки превращаются в III ворсинки. Кровь в сосудах плода в III ворсинках и кровь матери не смешиваются, между ними находится плацентарный барьер, который состоит из следующих слоев:
1. Эндотелий капилляров плода в III ворсинках.
2. Базальная мембрана капилляров плода.
3. Внезародышевая мезенхима.
4. Цитотрофобласт.
5. Симпластический трофобласт. Типы плацент у млекопитающих:
1. Эпителиохориальная - ворсинки хориона проникают в просвет маточных желез, эпителий не разрушается (пример: у свиньи).
2. Десмохориальная - ворсинки хориона проникают через эпителий матки и контактируют с рыхлой соед.тканью эндометрия (пример: у жвачных).
3. Эндотелиохориальная - ворсинки хориона проникают через эпителий матки и прорастают в стенку сосудов матери до эндотелия, но в просвет сосуда не проникают (пример: у хищников).
4. Гемахориальная - ворсинки хориона проходят через эпителий матки, прорастают через стенки сосудов матери и плавают в крови матери, т.е. ворсинки контактируют непосредственно с кровью матери (пр.: человек).
Плацента выполняет следующие функции:
- трофическую;
- дыхательную;
- выделительную;
- иммунобиологическую – защита плода от антигенов, которые могут быть в крови матери. Но эта защита плохая, поэтому в организме матери усиленно действуют клетки-супрессоры, подавляющие материнский иммунитет, поэтому беременность проходит на фоне иммунодефицита (со дня оплодотворения);
- барьерную – плацентарный барьер неустойчив для многих соединений и ряда лекарственных веществ, а также для алкоголя;
- эндокринную – плацента начинает рано вырабатывать гормоны, поддерживающие процесс эмбрионального развития;
- белоксинтезирующая функция
2. Классификация и характеристика иммуноцитов и их взаимодействие в реакциях гуморального и клеточного иммунитета.
Иммуноциты или иммунокомпетентные клетки - это клетки, обеспечивающие защиту организма от всего генетически чу-жого. К ним относят Т-и В - лимфоциты, макрофаги, тучные клетки, гранулоциты. Макрофаг, фагоцитировавший антиген, как правило, не уничтожает его полностью, а перерабатывает и выделяет на свою поверхность. Одновременно он выделяет интерлейкин-1, которым активизирует лимфоциты и запускает иммунную реакцию. Кроме того, макрофаг секретирует бактерицидные вещества, интерферон; факторы, стимулирующие и подавляющие размножение лимфоцитов, фактор некроза опухолей и др. Информацию Т-хелперам могут также передавать и В-лим-фоциты, и натуральные киллеры.
Эффекторные клетки в клеточном иммунитете - Т-киллеры. Они распознают антиген при помощи своих рецепторов и прикрепляются к нему. У Т-лимфоцитов, кроме рецептора к антигену, имеется рецептор обеспечивающий кооперацию между Т- и В-лимфоцитами. В месте прикрепления к антигену киллер с помощью выделяемых веществ разрывает мембрану антигенносителя и вызывает осмотический лизис. Другой механизм уничтожения - на расстоянии, с помощью токсических веществ.
Эффекторные клетки в гуморальном иммунитете - плазмоциты, которые образуются из В-лимфоцитов под влиянием стимуляции со стороны антигена и Т-хелпера. Об антигене В-лимфо-цит получает информацию от макрофага, а Т-хелпер стимулирует процесс дифференцировки с помощью медиатора интерлейкина-2.
ГУМОРАЛЬНЫЙ ИММУНИТЕТ
реализуется путем выработки антител (иммуноглобулинов), которые разрушают и/или выводят антиген из организма Конечная цель гуморального иммунитета — выработка антител на какой-либо антиген.
Антитела вырабатываются плазматическими клетками, которые образуются из В-лимфоцитов, поэтому гуморальный иммунитет иногда называют В-иммунитетом.
АНТИТЕЛА или ИММУНОГЛОБУЛИНЫ — гликопротеины, синтезируемые плазматическими клетками, способные связывать и инактивировать антигены, которые затем разрушаются протеазами другими ферментами, могут покрывать антиген, что облегчает его последующий фагоцитоз макрофагами или нейтрофилами. Антитела способны связываться с некоторыми клетками, что приводит к изменению функций этих клеток.
КЛЕТОЧНЫЙ ИММУНИТЕТ
реализуется путем выработки цитотоксических Т-лимфоцитов (Т-киллеров), которые разрушают и/или выводят антиген из организма.
Конечная цель клеточного иммунитета — выработка цитотоксических Т-лимфоцитов на какой-то антиген.
Клеточный иммунитет иногда называют Т-иммунитетом, так как эффекторными летками клеточного иммунитета являются цитотоксические Т-лимфоциты.
3. Гипофиз. Источники развития, строение. Тканевой и клеточный состав адено- и нейрогипофиза. Регуляция их функций.
4. функции.
Гипофиз закладывается и развивается на 4-ой неделе эмбрионального развития из 2-х источников:
1. Эпителий верхней стенки ротовой бухты.
2. Выпячивание стенки промежуточного пузыря головного мозга.
Эпителий верхней стенки ротовой бухты выпячивается в направлении к основанию головного мозга - гипофизанрый карман Ратке, навстречу которому растет выпячивание стенки промежуточного пузыря головного мозга. Из эпителиального зачатка формируется передняя
и промежуточная доля аденогипофиза, из мозговой ткани образуется задняя доля.
СТРОЕНИЕ
Наиболее просто построена задняя доля гипофиза. Она представлена в основном элементами глии. Глиоциты здесь называются питуицитами. Клетки имеют отросчатую форму, отростки заканчиваются у сосудов: либо в адвентиции, либо соприкасаются с базальной мембраной. Со стороны гипоталамуса из супраоптического и паравентрикулярного ядер от крупных нервных клеток отходят отростки – аксоны, которые по ножке гипофиза проникают в заднюю дольку, где заканчиваются терминалями около сосудов. В самой задней доле гормоны не вырабатываются, они вырабатываются в этих крупных клеточных ядрах гипоталамуса и по аксонам спускаются к терминалям, где накапливаются. Эти накопления видны в виде телец Херринга. Т.о. здесь выделяется антидиуретический гормон (вазопрессин) – вырабатывается в супраоптических ядрах, и окситоцин – вырабатывается в паравентрикулярных ядрах. Задний гипофиз с гипоталамусом связан нейрально (отростками нейроцитов). [Окситоцин вызывает сокращения матки и отдачу молока]
Средняя доля в эмбриогенезе представлена задней стенкой кармана Ратке (мало разрастается). Представляет собой типичный эпителиальный пласт. Клетки окрашены слабобазофильно, между клетками встречаются сосуды, в которые выделяются гормоны, вырабатывающиеся здесь. Иногда между клетками может накапливаться секрет наподобие коллоида и образовываться фолликулы. В средней доле вырабатывается меланоцитотропный и липотропный гормоны. Т.о., средняя доля участвует в регуляции жирового обмена, частично минерального и держит под контролем пигментообразование. У человека средняя доля выражена плохо и клетки могут мигрировать на территорию передней доли.