Динамометрирование установок

Диаграмму нагрузки на устьевой шток в зависимости от его хода называют динамограммой, а ее снятие – динамометрированием ШСНУ. В наиболее распространенном гидравлическом динамографе типа ГДМ-3 (рис. 3.20) действующая на шток нагрузка передается через рычаговую систему на мембрану камеры 9, заполненную жидкостью (спиртом или водой), где создается повышенное давление. Давление жидкости в камере, пропорциональное нагрузке на шток, передается по капиллярной трубе 8 на геликсную пружину 7. При увеличении давления геликсная пружина разворачивается, а перо 6, прикрепленное к ее свободному концу, чертит линию на бумажном диаграммном бланке 5. Бланк закреплен на подвижном столике, который с помощью приводного механизма перемещается пропорционально ходу устьевого штока. В результате получается развертка нагрузки Р в зависимости от длины хода S. Для снятия динамограммы измерительную часть динамографа (месдозу и рычаг) вставляют между траверсами канатной подвески штанг, а нить 1 приводного механизма самописца прикрепляют к неподвижной точке (устьевому сальнику). Масштаб хода изменяют сменой диаметра шкива 2 самописца (1:15, 1:30, 1:45), а усилия - перестановкой опоры месдозы и рычага.

Динамограф предварительно тарируют. На рис. 3.19 показана теоретическая динамограмма.

Точка А - начало хода устьевого штока вверх АБ – восприятие нагрузки от веса жидкости после закрытия нагнетательного клапана. Отрезок бБ - потеря хода плунжера в результате удлинения штанг и сокращения труб, отрезок БВсоответствует ходу плунжера вверх. При обратном ходе штока линия ВГотображает разгрузку штанг от веса жидкости (трубы растянулись, а штанги сократились на длину отрезка П). В интервале ГА (ход плунжера вниз) нагрузка Рвн равна весу штанг в жидкости, а при ходе вверх Рвв - весу штанг и весу жидкости над плунжером.

динамометрирование установок - student2.ru динамометрирование установок - student2.ru

Рис. 3.19. Теоретическая динамограмма ШСН

динамометрирование установок - student2.ru

Рис. 3.20. Принципиальная схема гидравлического динамографа

и его установки между траверсами канатной подвески:

1 – нить приводного механизма, 2 – шкив ходового винта, 3 – ходовой винт столика, 4 ‑ направляющие салазки столика, 5 – бумажный бланк, 6 – пишущее перо геликсной пружины, 7 – геликсная пружина, 8 – капиллярная трубка, 9 – силоизмерительная камера, 10 – нажимной диск, 11 – месдоза (верхний рычаг силоизмерительной части), 12 – рычаг (нижний) силоизмерительной части

Фактическая динамограмма отличается от теоретической и ее изучение позволяет определить максимальную и минимальную нагрузки, длины хода штока и плунжера, уяснить динамические процессы в колонне штанг, выявить ряд дефектов и неполадок в работе ШСВУ и насоса (рис. 3.21).

динамометрирование установок - student2.ru

Рис. 3.21. Практические динамограммы работы ШСН:

а - нормальная тихоходная работа; б - влияние газа; в – превышение подачи насоса над притоком в скважину; г - низкая посадка плунжера; д - выход плунжера из цилиндра невставного насоса; е – удары плунжера о верхнюю ограничительную гайку вставного насоса; ж - утечки в нагнетательной части; и - полный выход из строя нагнетательной части; к ‑ полный выход из строя всасывающей части; л - полуфонтанный характер работы насоса; м ‑ обрыв штанг (пунктиром показаны линии теоретической динамограммы); з - утечки во всасывающей части

В настоящее время находят широкое применение электронные средства контроля и диагностики нефтедобывающих скважин. Например, томское научно-производственное и внедренческое общество СИАМ разработало и наладило выпуск электронных динамографов серии СИДДОС и уровнемеров серии СУДОС с применением современной компьютерной техники и программного обеспечения.

Рабочий комплект уровнемера СУДОС - 02м включает блок электронный и устройство генерации и приема, соединяемые измерительным кабелем.

Характеристики

Диапазон контролируемых уровней (20 ¸ 3000) м

Диапазон контролируемых давлений (0÷100) кгс/см2

Емкость энергонезависимой памяти 149 измерений

Рабочий диапазон температур (-40 ÷ +50) 0С

Динамографы серии СИДДОС обеспечивают автоматизацию контроля динамограмм типа "нагрузка – положение" в рабочем состоянии и при выходе ШСНУ на режим, а также контроль утечек (тест клапанов) по методу «линии потерь».

Результаты измерений (кроме непосредственной индикации) могут быть распечатаны на микропринтере, переданы в блок визуализации или в базу данных на персональном компьютере.

Характеристики динамографа СИДДОС-01

Диапазон контролируемых нагрузок (0÷10) тс

Диапазон контролируемых перемещений (0÷3,5) м

С темпом качаний (3÷8) кач/мин

Емкость энергозависимой памяти 80 динамограмм

Факторы, влияющие на производительность насоса

Осложнения в эксплуатации насосных скважин обусловлены большим газосодержанием на приеме насоса, повышенным содержанием песка в продукции (пескопроявлением), наличием высоковязких нефтей и водоносных эмульсий, существенным искривлением ствола скважины, отложениями парафина и минеральных солей, высокой температурой и др.

Производительность насоса зависит также от пригонки плунжера к цилиндру, износа деталей насоса, деформации насосных штанг и труб, негерметичности труб.

Теоретическая производительность ШСН равна

динамометрирование установок - student2.ru , м3/сут,

где 1440 – число минут в сутках;

D - диаметр плунжера наружный;

L - длина хода плунжера;

n - число двойных качаний в минуту.

Фактическая подача Q всегда <Qт .

Отношение динамометрирование установок - student2.ru называется коэффициентом подачи, тогда динамометрирование установок - student2.ru динамометрирование установок - student2.ru - изменяется от 0 до 1.

В скважинах, в которых проявляется так называемый фонтанный эффект, т.е. в частично фонтанирующих через насос скважинах может быть динамометрирование установок - student2.ru < 1.

Работа насоса считается нормальной, если динамометрирование установок - student2.ru .

Коэффициент подачи зависит от ряда факторов, которые учитываются коэффициентами

динамометрирование установок - student2.ru ,

где коэффициенты:

aд - деформации штанг и труб;

aус - усадки жидкости;

aн- степени наполнения насоса жидкостью;

aут- утечки жидкости.

динамометрирование установок - student2.ru ,

где Sпл - длина хода плунжера (определяется из условий учета упругих деформаций штанг и труб); S - длина хода устьевого штока (задается при проектировании).

динамометрирование установок - student2.ru , динамометрирование установок - student2.ru ,

где DS- деформация общая;

DSш - деформация штанг;

DSт - деформация труб.

динамометрирование установок - student2.ru ,

где b - объемный коэффициент жидкости, равный отношению объемов (расходов) жидкости при условиях всасывания и поверхностных условиях.

Насос наполняется жидкостью и свободным газом. Влияние газа на наполнение насоса учитывают коэффициентом наполнения цилиндра насоса

динамометрирование установок - student2.ru ,

где R'- газовое число (отношение расхода свободного газа к расходу жидкости при условиях всасывания); Квр -коэффициент, характеризующий долю пространства, т.е. объема цилиндра под плунжером при его крайнем нижнем положении от объема цилиндра, описываемого плунжером. Увеличив длину хода плунжера, можно увеличить aн.

Коэффициент утечек

динамометрирование установок - student2.ru ,

гдеgут - расход утечек жидкости (в плунжерной паре, клапанах, муфтах НКТ); aут - величина переменная (в отличие от других факторов), возрастающая с течением времени, что приводит к изменению коэффициента подачи.

Оптимальный коэффициент подачи определяется из условия минимальной себестоимости добычи и ремонта скважин.

Значительное количество свободного газа на приеме насоса приводит к уменьшению коэффициента наполнения насоса вплоть до нарушения подачи. Основной метод борьбы - уменьшение газосодержания в жидкости, поступающей в насос. При поступлении жидкости в насос газ частично сепарируется в затрубное пространство. Сепарацию газа характеризуют коэффициентом сепарации, который представляет собой отношение объема свободного газа, уходящего в затрубное пространство, ко всему объему свободного газа при термодинамических условиях у приема насоса.

Сепарацию (отделение) газа можно улучшить с помощью защитных устройств и приспособлений, называемых газовыми якорями (газосепараторами), которые устанавливаются при приеме насоса (рис. 3.22). Работа их основана на использовании сил гравитации (всплывания), инерции, их сочетания.

динамометрирование установок - student2.ru

Рис. 3.22. Принципиальные схемы газовых якорей однокорпусного (а),

однотарельчатого (б):

1 - эксплуатационная колонна; 2 – отверстия; 3 – корпус; 4 – приемная труба;

5 – всасывающий клапан насоса; 6 – тарелки

В однокорпусном якоре при изменении газожидкостного потока на 1800 пузырьки газа под действием архимедовой силы всплывают и частично сепарируются в затрубное пространство, а жидкость через отверстия 2 поступает в центральную трубу 4 на прием насоса. Эффективность сепарации определяется соотношением скоростей жидкости и газовых пузырьков и конструктивным исполнением сепаратора (незащищенный открытый вход или дырчатый фильтр). В однотарельчатом якоре под тарелкой 6, обращенной краями вниз, пузырьки газа коалесцируют (объединяются), а сепарация газа происходит при обтекании тарелки и движения смеси горизонтально над тарелкой к отверстиям 2 в приемной трубе 4. Существуют и другие конструкции якорей, например зонтичные, винтовые.

Отрицательное влияние песка в продукции приводит к абразивному износу плунжерной пары, клапанных узлов и образованию песчаной пробки на забое. Песок также при малейшей негерметичности НКТ быстро размывает каналы протекания жидкости в резьбовых соединениях, усиленно изнашивает штанговые муфты и внутреннюю поверхность НКТ, особенно в искривленных скважинах. Даже при кратковременных остановках (до 10 ¸ 20 мин) возможно заедание плунжера в насосе, а при большом осадке – и заклинивание штанг в трубах. Увеличение утечек жидкости, обусловленных абразивным износом и размывом, приводит к уменьшению подачи ШСНУ и скорости подачи восходящего потока ниже приема, что способствует ускорению образования пробки. А забойная пробка существенно ограничивает приток в скважину. Снижение дебита вследствие износа оборудования и образования песчаной пробки вынуждает проведение преждевременного ремонта для замены насоса и промывки пробки. К песчаным скважинам относят скважины с содержанием песка более 1 г/л.

Выделяют 4 группы методов борьбы с песком при насосной эксплуатации:

1. Наиболее эффективный метод - предупреждение и регулирование поступления песка из пласта в скважину. Первое осуществляют посредством либо установки специальных фильтров на забое, либо крепления призабойной зоны, а второе - уменьшением отбора жидкости.

При этом целесообразно обеспечить плановый запуск песочной скважины увеличением длины хода S, числа качаний n или подливом чистой жидкости в скважину через затрубное пространство (20 ¸ 25% от дебита).

2. Обеспечение выноса на поверхность значительной части песка, поступающего в скважину. Условия выноса по А.Н. Адонину,

динамометрирование установок - student2.ru .

где Vж - скорость восходящего потока жидкости,

Vсв - скорость свободного осаждения песчинки с расчетным диаметром, равным среднему диаметру наиболее крупной фракции, составляющей около 20% всего объема песка.

Это обеспечивается подбором сочетаний подъемных труб и штанг либо подкачкой в затрубное пространство чистой жидкости (нефти, воды).

3. Установкой песочных якорей (сепараторов) и фильтров у приема насоса достигается сепарация песка от жидкости. Работа песчаных якорей основана на гравитационном принципе (рис. 3.23).

Песочный якорь прямого действия одновременно является газовым якорем. Применение песочных якорей - не основной, а вспомогательный метод борьбы с песком. Метод эффективен для скважин, в которых поступление песка непродолжительно и общее его количество невелико.

Противопесочные фильтры, устанавливаемые у приема насоса, предупреждают поступление в насос песчинок средних и крупных размеров (более 0,01 мм в зависимости от соотношения размеров песчинок и каналов материала фильтра). Известны сетчатые, проволочные, капроновые, щелевые, гравийные, металлокерамические, цементно‑песчано‑солевые, песчано-пластмассовые, пружинные и другие фильтры. По А.М. Пирвердяну, лучшими являются сетчатые фильтры с размером ячеек 0,25 х 1,56 мм. Вследствие быстрого засорения (забивания, заклинивания) противопесочные фильтры не нашли широкого применения. Их целесообразно помещать в корпус с "карманом" для осаждения песка (не образуется забойная пробка, уменьшается скорость заклинивания) или сочетать с песочным якорем.

динамометрирование установок - student2.ru

Рис. 3.23. Принципиальная схема песочного якоря прямого действия:

1 – эксплуатационная колонна, 2 – слой накопившегося песка, 3 –корпус, 4 – приемная труба,5 – отверстия для ввода смеси в якорь.

4. Использование специальных насосов для песочных скважин.

При большой кривизне ствола скважины наблюдается интенсивное истирание НКТ и штанг вплоть до образования длинных щелей в трубах или обрыва штанг. Для медленного проворачивания колонны штанг и плунжера "на выворот" при каждом ходе головки балансира с целью предотвращения одностороннего истирания штанг, муфт и плунжера при использовании пластинчатых скребков применяют штанговращатель. Применяют также протекторные и направляющие муфты, скребки‑завихрители. Кроме того, принимают режим откачки, характеризующийся большой длиной хода S и малым числом качаний n.

Основной способ подъема высоковязких нефтей на поверхность - штанговый скважинно-насосный. В процессе эксплуатации возникают осложнения, вызванные сигналами гидродинамического трения и при движении штанг в жидкости, а также движении жидкости в трубах и через нагнетательный и всасывающий клапаны.

При откачке нефтей с вязкостью более 500 мПа·с может происходить "зависание" штанг в жидкости при ходе вниз. С целью уменьшения влияния вязкости применяют различные технические приемы и технологические схемы добычи: применение специальных двухплунжерных насосов, увеличение диаметра НКТ, насоса и проходных сечений в клапанах насоса, установление тихоходного режима откачки (число качаний до 3¸4 мин-1, длина хода 0,8¸0,9 м) подливом растворителя (маловязкой нефти) в затрубное пространство (10¸15% расхода добываемой нефти или воды), подогревом откачиваемой жидкости у приема насоса или закачкой горячего теплоносителя в затрубное пространство.

Для борьбы с отложениями парафина применяют такие же методы, как при фонтанной и газлифтной эксплуатации. При добыче парафинистой нефти происходит отложение парафина на стенках НКТ, что ведет к снижению производительности насоса и прекращению извлечения жидкости. При небольшой интенсивности отложения парафина применяется наземная и подземная пропарка труб с помощью паропередвижной установки.

Широко применяется метод депарафинизации с помощью пластинчатых скребков. Скребки крепят хомутами к штангам на расстоянии друг от друга не более длины хода плунжера. Ширина скребка на 5 – 8 мм меньше диаметра НКТ. Насосные установки оборудуют штанговращателями. Колонны штанг с укрепленными на них скребками при каждом ходе вниз срезают парафин со стенок труб.

Наши рекомендации