Лабораторная работа. Фотометрическое определение марганца и хрома при их совместном присутствии

Цель работы: ознакомление с фотометрическим определением элементов при их совместном присутствии методом калибровочного графика.

Сущность работы: одновременное определение концентрации двух веществ (хрома и марганца) при их совместном присутствии основано на различии спектров поглощения окрашенных растворов перманганат- и дихромат-ионов. Спектры поглощения определяемых ионов частично накладываются друг на друга (рис. 6). В этом случае при фотометрировании с разными светофильтрами можно пренебречь светопоглощением лишь одного из компонентов окрашенной смеси. При 550 ± 20 нм поглощает преимущественно перманганат-ион и оптическая плотность А = 550 нм обусловлена только перманганат-ионом (незначительным светопоглощением дихромат-иона пренебрегаем). При 430 ± 20 нм поглощают оба аниона и оптическая плотность раствора А = 430 нм аддитивно складывается из оптической плотности, обусловленной перманганат-ионом, и оптической плотности, обусловленной дихромат-ионом.

Лабораторная работа. Фотометрическое определение марганца и хрома при их совместном присутствии - student2.ru

Рис. 6. Спектры поглощения KMnO4 (1) и K2Cr2O7 (2), частично накладывающиеся друг на друга

Измеряют оптическую плотность стандартных растворов КМnO4 при 550 и 430 нм и оптическую плотность стандартных растворов К2Сr2О7 при 430 нм. Строятся три калибровочных графика (рис. 7).

Лабораторная работа. Фотометрическое определение марганца и хрома при их совместном присутствии - student2.ru

Рис. 7. Калибровочный график для определения марганца и хрома при их совместном присутствии: 1 – кривая для определения хрома при 430 нм, 2 – кривая для определения марганца при 550 нм, 3 – кривая для определения оптической плотности раствора перманганата калия при 430 нм

По величине оптической плотности анализируемого раствора, измеренного в области 550 нм, и калибровочной кривой 2 сразу определяют неизвестную концентрацию марганца. Одновременно при помощи калибровочной кривой 3 определяют оптическую плотность раствора перманганат-иона при 430 нм. Затем по разности оптических плотностей исследуемого раствора и раствора КМnO4, измеренных при 430 нм (ΔАХ = Аx(430) – АMn(430)), определяют концентрацию хрома.

Приборы и реактивы: фотоэлектроколориметр «ФЭК-М»; кюветы; пипетка вместимостью 1 мл; пипетка вместимостью 10 мл; мерная колба вместимостью 100 мл; мерная колба вместимостью 1 л; мерные колбы вместимостью 50 мл; полумикробюретка вместимостью 5 мл; 50 %-ная серная кислота; 0,1 н. стандартный раствор КМnO4.

Перед применением 9,1 мл стандартного раствора КМnO4 помещают в мерную колбу вместимостью 100 мл и доводят раствор дистиллированной водой до метки. Раствор содержит 0,1 мг марганца в 1 мл.

Стандартный раствор К2Сr2O7: навеску 0,2818 г К2Сr2O7 помещают в мерную колбу вместимостью 1 л и доводят раствор дистиллированной водой до метки. Раствор содержит 0,1 мг хрома в 1 мл; исследуемый раствор, содержащий КМnO4 и К2Сr2O7.

Ход анализа. Для построения калибровочного графика в мерные колбывместимостью 50 мл помещают с помощью микробюретки 1,0; 2,5; 5,0;

7,5 и 10 мл подготовленного стандартного раствора перманганата калия. Затем добавляют в каждую колбу по 5 мл раствора серной кислоты. Содержимое колб доводят до метки дистиллированной водой и тщательно перемешивают. Измеряют оптическую плотность полученной серии в кювете толщиной 1 см при длинах волн 550 и 430 нм. Полученные данные помещают в табл. По данным строят калибровочный график (см. рис. 7, кривые 2, 3): найденные величины оптической плотности откладывают по оси ординат, а соответствующие им концентрации (мг/50 мл) – по оси абсцисс. Затем в колбы той же вместимости помещают такие же количества стандартного раствора дихромата калия. Добавляют в каждую колбу по 5 мл раствора серной кислоты, доводят объем до метки дистиллированной водой и тщательно перемешивают. Измеряют оптическую плотность в тех же кюветах при длине волны 430 нм. Полученные данные помещают в табл. По полученным данным строят калибровочный график для дихромата калия (см. рис. 7, кривая l).

Таблица

Стандартный набор Номер эталона Объем эталона в растворе С, мг/50 мл А
Mn Cr При 550 нм При 430 нм
А1 А2 А3 А1 А2 А3
KMnO4 1,0 2,5 5,0 7,5 0,1 0,25 0,50 0,75 1,00
К2Сr2O7 1,0 2,5 5,0 7,5 0,1 0,25 0,50 0,75 1,00

Аликвотную порцию анализируемого раствора (5 мл) помещают в мерную колбу вместимостью 50 мл, добавляют 5 мл серной кислоты. Содержимое колбы доводят до метки дистиллированной водой итщательно перемешивают. Оптическую плотность полученного раствора измеряют при 430 и 550 нм в кювете толщиной 1 см. В качестве нулевого раствора используют дистиллированную воду. Содержание марганца в растворе определяют по кривой 2 (см. рис. 7). По найденной концентрации марганца при помощи кривой 3 определяют его оптическую плотность при длине волны 430нм – АМn(430). Затем находят разность оптической плотности смеси и перманганат-иона при 430 нм по формуле^

∆Ах(430) = Асм(430) – АМn(430),

где Асм(430) – оптическая плотность смеси, найденная при длине волны 430 нм.

По найденной величине ΔАх(430) при помощи кривой 1 вычисляют содержание хрома в исследуемом растворе.

Контрольные вопросы и задачи

1. Абсорбционная спектроскопия. Спектры поглощения. Основной закон светопоглощения (закон Ламберта – Бугера – Бера). Отклонения от закона Ламберта – Бугера – Бера.

2. Что называется спектром поглощения и в каких координатах егопредставляют?

3. Что называется коэффициентом пропускания Т и оптической плотностью А? В каких пределах изменяется их величина?

4. Каков физический смысл молярного коэффициента светопоглощения? Какие факторы влияют на его величину?

5. Что представляют собой нулевые растворы или растворы сравнения? С какой целью их используют? Как выбирают длину волны и светофильтры при фотометрическом методе анализа?

6. Вычислите оптическую плотность раствора хлорида меди (II) с концентрацией 0,01000 моль/л с толщиной поглощающего слоя 1 см (е = 100).

7. Вычислите молярный коэффициент светопоглощения раствора окрашенного соединения железа (III) с концентрацией 0,1 мг в 50 мл раствора, если оптическая плотность раствора составила 0,410 при толщине поглощающего слоя 3 см.

8. Рассчитайте оптимальную толщину поглощающего слоя кюветы (мм), необходимую для измерения оптической плотности раствора сульфата меди (II), содержащего 5 мг соли в 50 мл раствора. Величина оптической плотности составляет 0,610, молярный коэффициент светопоглощения ε = 103.

Наши рекомендации