Лекция 15. принцип единства информационного пространства
Следующей особенностью ИБС является единая информационная база. В современных условиях для ведения единой информационной базы используются различного рода системы управления базами данных (СУБД). СУБД имеют специальные механизмы контроля целостности данных (триггеры, внешние ключи и т.д.), отличающиеся простотой и высокой надежностью. В подавляющем большинстве это системы управления реляционными БД.
Базу данных принято называть единой, если однотипные по смыслу данные хранятся единообразно в одном месте. Например, данные о физических лицах хранятся в одних и тех же таблицах и в кредитном модуле, и в модуле обслуживания физических лиц,
В отсутствие единой информационной базы усложняется поиск, обмен, а, следовательно, и получение любой информации встроенными средствами системы. При этом различные задачи в системе выполняются отдельно и являются информационно слабо связанными на уровне ИБС.
Современные банковские системы ориентированы на использование единой базы данных, являющейся совокупностью структурированных данных, предназначенных для многоцелевого и многократного их применения, и методов доступа к ним.
Отличительной особенностью баз данных ИБТ является совместное хранение данных с их описаниями. Эти описания называются метаданными (данные о данных). Они необходимы для контроля и управления данными как ресурсом.
Существует несколько уровней программного обеспечения: операционная система, СУБД, прикладные программы, каждый из которых решает свои специфические задачи. Например, СУБД обеспечивает интерфейс доступа к данным на чтение и запись, блокирование записей в режиме многопользовательской работы, предоставляет средства архивации, восстановления и резервного копирования данных. Наиболее распространенным интерфейсом доступа к данным являются SQL-запросы, которые анализируются на СУБД, и различные программные средства, которые исполняют эти запросы.
Имеется большое количество СУБД, которые используются при построении ИБТ. Все они поддерживают реляционную модель данных, но имеют различные эксплуатационные характеристики. Потенциал программного продукта зависит от применяемой в нем СУБД и от степени использования ключевых свойств СУБД. Важно, что на программный продукт нельзя переносить свойства СУБД, так как реализация продукта с аналогичным свойством требует специальных усилий со стороны разработчика прикладного программного обеспечения.
Следует различать единую базу данных и единое информационное пространство. Под единым информационным пространством понимается возможность вызывать функции других подсистем, а также общность данных и методов доступа к ним в системе. Сама по себе СУБД не обеспечивает ведение единого информационного пространства, но позволяет его реализовать и использовать с максимально возможной эффективностью.
Под единым информационным пространством банка можно понимать также организацию информации, циркулирующей в банке, включая методы ее обработки, хранения и представления. На уровне автоматизированной банковской системы единое информационное пространство можно интерпретировать, как возможность системы оперировать любыми данными, формирующимися в процессе функционирования системы. При этом должны соблюдаться принципы открытости, защищенности, однократного учета и ввода. Таким образом, реализация единого информационного пространства банковской технологией обеспечивает эффективную организацию работ с информацией, как с точки зрения быстродействия, так и в аспекте удобства работы пользователя с данными.
Использование СУБД при построении системы банковского обслуживания позволяет не только организовать хранение данных в рамках единой базы данных, но и управлять потоками информации и данных в системе, основываясь на единых принципах и методах, обеспечивающих реализацию конкретных предметно-ориентированных алгоритмов обработки.
В последнее время все большую популярность получают постреляционные модели данных, которые, в сущности, являются развитием реляционной модели, с тем отличием, что в ней снято ограничение на атомарность (неделимость) атрибутов.
Ограничение на атомарность атрибутов означает, что в реляционной базе данных атрибут (поле) каждой записи может содержать только одно значение. В постреляционной модели, напротив, поле может содержать несколько значений или даже целую таблицу. Таким образом, появляется возможность «вложить» одну таблицу в другую. Это позволяет более эффективно оперировать банковскими бизнес-объектами, каждые, из которых становится логически целостным, будучи представлен всего одной записью.
Скорость выполнения запросов в постреляционных СУБД возрастает (иногда в несколько раз), но переход от реляционных баз данных, получивших повсеместное распространение, к постреляционным связан со значительными затратами и носит пока ограниченный характер.
Еще одним путем к обеспечению единого информационного пространства является использование хранилища данных.
Особенностью информационной системы банка является необходимость обработки двух типов данных, а именно оперативных и аналитических. Поэтому в процессе функционирования ИБС приходится решать два класса задач: обеспечение повседневной работы банка по вводу и обработке информации и организация информационного хранилища в целях анализа данных для выявления тенденций развития, прогнозирования состояний, оценки и управления рисками и т.д. Задачи первого класса полностью решаются OLTP-системами (OnLine Transactional Processing - оперативная обработка транзакции). Для работы с аналитическими данными предназначены OLAP-системы (OnLine Analytical Processing -оперативная аналитическая обработка), которые построены по технологии хранилища данных и служат для агрегированного анализа больших объемов данных. Эти системы являются составной частью систем принятия решений или управленческих систем класса middle и top management, т.е. систем, предназначенных для пользователей среднего и высшего уровня управления банка.
Таким образом, возможности ИБС могут быть расширены путем совместного использования транзакционных OLTP-систем и хранилищ данных (Data Warehouse).
Отличительными чертами хранилища данных являются:
- ориентация на предметную область - в хранилище данных помещается только та информация, которая может быть полезной для работы аналитических систем;
- защищенность - в хранилище можно добавлять информацию, но ее нельзя изменять, модифицировать и корректировать;
- поддержка хронологических данных - для анализа требуется информация, накопленная за длительный период времени;
- интеграция в едином хранилище ранее разъединенных данных, поступающих из различных источников, а также их проверка, согласование и приведение к единому формату;
- агрегация - одновременное хранение в базе агрегированных и первичных данных, чтобы запросы на определение суммарных величин выполнялись достаточно быстро.
Таким образом, хранилище данных представляет собой специализированную базу данных, в которой собирается и накапливается информация, необходимая менеджерам банка для подготовки управленческих решений (о клиентах банка, кредитных делах, процентных ставках, курсах валют, котировках акций, состоянии инвестиционного портфеля, операционных днях филиалов и т.д.).
Хранилища данных принято изображать в виде многомерного куба. Величины, хранящиеся в ячейках этого куба и называемые фактами, являются количественными показателями, характеризующими деятельность кредитного учреждения. В частности, это могут быть данные об оборотах и остатках по счетам, структуре расходов и доходов, состоянии и движении денежных средств и т.д. Измерения куба, образующие одну из его граней, - это множество однотипных данных, предназначенных для описания фактов (например, филиалы банка, операционные дни, клиенты и валюты). Агрегация данных выполняется по измерениям куба, поэтому элементы измерений принято объединять в иерархические структуры. Так, филиалы часто группируются по территориальному признаку, клиенты - по отраслевому признаку, даты группируются в недели, месяцы, кварталы и годы. Каждая ячейка данного куба «отвечает» за конкретный набор значений по его отдельным измерениям, например оборотов балансовых счетов за день, квартал, год в разрезе филиалов. Над числовыми фактами, хранящимися в ячейках, можно выполнять различные математические и логические операции, позволяющие рассматривать представленную информацию под разными углами зрения. Операции проводятся с использованием методов управления данными. Вся совокупность методов называется репозиторием методов хранилища данных.
Данные загружаются в хранилище из оперативных систем обработки данных (OLTP-системы головной конторы и отдельных филиалов) и из внешних источников (официальные отчеты предприятий и банков, результаты биржевых торгов и т.д.). При загрузке данных в хранилище выполняется проверка целостности, сопоставимости, полноты загружаемых данных, а также проводятся их необходимое преобразование и трансформация.
Хранилище данных ориентировано на высшее и среднее руководство банка, ответственное за принятие решений и развитие бизнеса. Это руководители структурных, финансовых и клиентских подразделений, а также подразделений маркетинга, управления анализа и планирования.
Для работы с хранилищами данных используются специальные программные продукты, поскольку SQL-серверы не обеспечивают необходимого быстродействия по доступу к данным. Язык запросов при работе с хранилищем данных также отличается от SQL.
Одним из вариантов реализации на практике хранилища данных является построение витрин данных (Data Marts). Иногда их называют также киосками данных. Витриной данных является предметно-ориентированная совокупность данных, имеющая специфическую организацию. Содержание витрин данных, как правило, предназначено для решения некоего круга однородных задач одной области или нескольких смежных предметных областей. Например, для решения задач, связанных с анализом кредитных услуг банка, используется одна витрина, а для работ по анализу деятельности банка на фондовом рынке - другая.
Следовательно, витрина данных - это относительно небольшое специализированное хранилище данных, содержащее только тематически ориентированные данные и предназначенное для использования конкретным функциональным подразделением. Итак, функционально ориентированные витрины данных представляют собой структуры данных, обеспечивающие решение аналитических задач в конкретной функциональной области или подразделении компании (управление прибыльностью, анализ рынков, анализ ресурсов, анализ денежных потоков, управление активами и пассивами и т.д.). Таким образом, витрины данных можно рассматривать как маленькие хранилища, которые создаются в целях информационного обеспечения аналитических задач конкретных управленческих подразделений компании.
Создание витрины данных определяется необходимостью обеспечить возможности анализа данных той или иной предметной области наиболее оптимальными средствами.
Витрины данных и хранилище данных значительно отличаются друг от друга. Хранилище данных создается для решения корпоративных задач, присутствующих в корпоративной модели данных. Обычно хранилища данных создаются и приобретаются организациями с центральным подчинением, такими, как классические организации информационных технологий, например банк. Хранилище данных составляется усилиями всей корпорации.
Витрина данных разрабатывается для удовлетворения потребностей в решении конкретного однородного круга задач. Поэтому в одном банке может быть много различных витрин данных, каждая из которых имеет свой собственный внешний вид и свое содержание.
Следующее отличие состоит в степени детализации данных, так как витрина данных содержит уже агрегированные данные. В хранилище данных, наоборот, находятся максимально детализированные данные. Поскольку уровень интеграции в витринах данных более высок, чем в хранилищах, нельзя легко разложить степень детализации витрины данных в степень детализации хранилища. Но всегда можно последовать в обратном направлении и агрегировать отдельные данные в обобщенные показатели.
В отличие от хранилища витрина данных содержит лишь незначительный объем исторической информации, которая привязана только к небольшому отрезку времени и существенна только в момент, когда она отвечает требованиям решения задачи. Витрины данных можно представить в виде логически или физически разделенных подмножеств хранилища данных (рис. 1.3).
Рис. 1.3. Схема взаимосвязи витрин данных и хранилища данных
Витрины данных как правило создаются в многоуровневой технологии, которая оптимальна для гибкости анализа, но не оптимальна для больших объемов данных. Данные в такой витрине снабжены большим количеством индексов.
Структура витрин данных также ориентирована на многомерную организацию данных в виде куба. Однако их построение в силу ограниченности информационного диапазона, обеспечивающего потребности одной функциональной области, значительно проще и выгоднее, чем создание хранилища данных. Физическая структура базы данных в витрине данных создается по модели «звезда» (star schema), являющейся оптимальной при решении группы задач, для которой построена витрина, поскольку обеспечивает высокую скорость выполнения запросов посредством разделения данных. Звездообразная схема предполагает наличие одной центральной таблицы фактов (fact table), в которой содержатся суммирующие или фактические данные, и окружающих ее таблиц измерений (dimensional table), отражающих описательную информацию. Таблица фактов и таблицы измерений связаны между собой идентифицирующими связями, при этом ключевое поле таблицы фактов целиком состоит из всех первичных ключей таблиц измерений.
Существуют два типа витрин данных: зависимые и независимые. Зависимая витрина данных - это та, источником которой служит хранилище данных. Источником независимой витрины данных является среда первичных программных приложений. Зависимые витрины данных стабильны и имеют прочную архитектуру. Независимые витрины данных нестабильны и имеют неустойчивую архитектуру, по крайней мере, при пересылке данных.
Надо отметить, что витрины данных представляются идеальным решением наиболее существенного конфликта при проектировании хранилища данных - производительность или гибкость. В общем, чем более стандартизированной и гибкой является модель хранилища данных, тем менее продуктивно она отвечает на запросы. Это связано с тем, что запросы, поступающие в стандартно спроектированную систему, требуют значительно больше предварительных операций, чем в оптимально спроектированной системе. Направляя все запросы пользователя в витрины данных, поддерживая гибкую модель для хранилища данных, разработчики могут достичь гибкости и продолжительной стабильности структуры хранилища, а также оптимальной производительности для запросов пользователей.
Данные, попав в хранилище, могут быть распространены среди многих витрин данных для доступа пользовательских запросов. Эти витрины данных могут принимать различные формы - от баз данных «клиент-сервер» до баз данных на рабочем столе, OLAP-кубов или даже динамических электронных таблиц. Выбор инструментов для пользовательских запросов может быть широким и отображать предпочтения и опыт конкретных пользователей. Широкий выбор таких инструментов и простота их применения сделают их внедрение наиболее дешевой частью реализации проекта хранилища данных. Если данные в хранилище имеют хорошую структуру и проверенное качество, то их передача в другие витрины данных станет рутинной и дешевой операцией.
Использование технологий витрин данных, как зависимых, так и независимых, позволяет решать задачу консолидации данных из различных источников в целях наиболее эффективного решения задач анализа данных. При этом источниками могут быть различающиеся по архитектуре и функциональности учетные и справочные системы, в том числе и территориально разрозненные.
Принцип безопасности
При построении ИБС необходимо значительное внимание уделять вопросам безопасности и надежности функционирования системы. Современные ИБС построены по принципу распределенной обработки данных, поэтому они содержат мощные технические и программные средства, базы данных, а также средства телекоммуникации, создающие корпоративное информационное пространство банка. Отдельные компоненты системы по каналам связи обмениваются между собой данными, поэтому необходимо обеспечить надежность функционирования не только каждого из них, но и всей банковской информационной системы в целом.
Под безопасностью ИБС понимается защищенность системы от случайного или преднамеренного вмешательства в нормальный процесс ее функционирования, а также от попыток хищения, модификации или разрушения ее компонентов.
Безопасность любого компонента данной системы достигается обеспечением трех его характеристик: целостности, доступности и конфиденциальности.
Целостность компонента системы предполагает, что при функционировании системы информация может быть изменена только теми пользователями, которые имеют на это право.
Доступность предусматривает действительную доступность компонента авторизованному (т.е. допущенному) пользователю в любое время.
Конфиденциальность состоит в том, что определенная часть информации предоставляется только авторизованным пользователям.
Одними из важнейших аспектов проблемы обеспечения безопасности ИБС являются определение, анализ и классификация всех возможных угроз безопасности. Различают две основные группы угроз. К первой группе относятся так называемые случайные (непреднамеренные) угрозы, которые по своей сути не зависят от человека (например, стихийные бедствия), а также угрозы, обусловленные ошибками эксплуатации аппаратных и программных средств, сбоями и отказами работы оборудования и средств передачи данных и т.д.
Вторую группу составляют преднамеренные угрозы, приводящие к непосредственному раскрытию, изменению, хищению или уничтожению данных. Этот вид угроз исходит и от внутренних участников системы (персонала банка), и от внешних, так называемых «хакеров» и других злоумышленников.
К числу наиболее распространенных угроз безопасности ИБС относятся атаки «Салями», несанкционированный доступ в систему и к его компонентам, «Маскарад» и др. Поэтому для банков важно создать надежную интегрированную многоуровневую систему защиты, включающую такие средства защиты, как правовые (законодательные), организационные, физические и программно-аппаратные. При этом наилучший успех в достижении высокой степени защищенности ИБС достигается только на основе их комплексного использования.
Программными средствами могут поддерживаться следующие механизмы защиты информации:
• авторизация (присвоение полномочий), идентификация (именование) и аутентификация (опознавание, подтверждение подлинности) субъектов и объектов ИБС;
• криптографическое закрытие информации (шифрование и кодирование защищаемых данных);
• управление доступом к ресурсам системы (механизм разграничения доступа, администрирование работы пользователей, протоколирование всех действий в системе и т.п.);
• контроль целостности ресурсов системы (обеспечивается внутренними средствами контроля и управления применяемой СУБД).
Широкое распространение при электронных банковских расчетах получила электронно-цифровая подпись (ЭЦП), предназначенная для обеспечения гарантированного подтверждения подлинности и авторства документов, обрабатываемых с помощью вычислительной техники.
Электронная цифровая подпись позволяет заменить при безбумажном документообороте традиционные печать и подпись. Ее механизм включает процедуру формирования подписи отправителем и процедуру ее опознавания получателем. При ее построении используются асимметричные алгоритмы шифрования, основывающиеся на использовании общедоступного (открытого) ключа для шифрования и секретного ключа для дешифрования, при этом значение открытого ключа не позволяет определить секретный ключ.
Секретный ключ применяется для выработки подписи, хранится либо на магнитном носителе - дискете - и защищен паролем, ограничивающим доступ к ней, либо на устройстве Tough memory (для клиентов), либо на специальных криптосерверах (в банке).
Открытый ключ используется для проверки подлинности документа и цифровой подписи, однако его знание не дает возможности определить (восстановить) секретный ключ.
В качестве алгоритмов формирования ЭЦП на практике используются стандартные алгоритмы шифрования DES и RSA, а также алгоритм ГОСТ 34.10, принятый в качестве Госстандарта РФ с 01.12.1995 г.
Однако при выборе средств криптографической защиты информации практических банковских работников, прежде всего, интересуют такие основные характеристики, как криптостойкость, т.е. трудность подделки ЭЦП, скорость выполнения операций постановки, проверки подписи и генерации ключа подписи, а также удобство для пользователя.
Принцип эффективности
При внедрении ИБТ необходимо помнить и об эффективности. Автоматизация не должна быть разорительной для банка. Стоимость технологии не должна превышать эффект от ее внедрения. Поэтому при выборе технологии следует учитывать объем информации (в том числе и количество документов, ежедневно обрабатываемых банком), наличие филиалов и отделений, количество клиентов и оказываемых услуг (сегментация клиентской базы и пакета услуг), необходимость взаимодействия с внешними системами (биржами, платежными системами S.W.I.F.T., РКЦ), наличие возможности обмена данными с локальным программным обеспечением (ПО) и системами, которые уже используются в кредитной организации.
Для оценки эффективности информационной технологии применяется следующий подход. С одной стороны, подсчитывается так называемая «стоимость владения» (поддержание оборудования и программного обеспечения, составляющего информационную систему компании), а с другой - определяется, насколько использование этой информационной системы повышает производительность труда. Для оценки эффективности банковской технологии кроме соотношения «стоимость владения/производительность труда» необходимо учитывать и другие факторы:
• возможность контроля - недопущение ошибок пользователя при проведении банковских операций, поскольку возникновение подобных ошибок может повлечь не только негативные последствия для деловой репутации, но и штрафы;
• возможность поддержки уникального бизнеса компании - способность реализовывать конкурентные преимущества банка на рынке услуг;
• возможность адаптации - способность поддерживать новые бизнес-решения и новые услуги банка.
Как правило, подобные факторы не могут быть измерены в количественном выражении без опыта эксплуатации системы, а иногда и в процессе ее эксплуатации. Но роль данных факторов достаточно высока, поскольку в условиях рынка данные свойства технологии могут помочь, реализовать конкурентные преимущества банка или не допустить одностороннюю реализацию преимуществ конкурентами.
Принцип взаимодействия
Современные банковские технологии ориентированы на одновременную работу большого количества пользователей. Для обеспечения многопользовательской работы системы применяют специализированные технологии. Наиболее часто используется «клиент-серверная» технология.
Основными терминами данной технологии являются понятия клиент и сервер. Клиент - это комплекс программ, который предназначен для работы конкретного пользователя. Сервером называется программное обеспечение, функции и возможности которого одновременно использует большое количество пользователей.
Технология «клиент-сервер» бывает двухзвенная и многозвенная (рис. 1.4).
Рис. 1.4. «Клиент-серверная» архитектура: а - двухзвенная; б - многозвенная
При двухзвенной архитектуре система состоит из клиентов, которые непосредственно взаимодействуют с сервером. В контексте банковских технологий в качестве сервера, как правило, выступает СУБД. Многозвенная архитектура отличается существованием еще одного (или нескольких) звена, так называемых серверов приложений или серверов обслуживания, которые являются промежуточными звеньями между клиентами и сервером СУБД. Частным случаем многозвенной архитектуры является трех-звенная архитектура, состоящая из клиентов, сервера приложений и СУБД. Сервер приложений выполняет ряд функций, как системных, так и пользовательских, которые в случае использования двухзвенной архитектуры выполняет либо клиент, либо СУБД.
По способу организации обмена данными между клиентом и сервером различают модели «толстого» и «тонкого» клиента:
• модель «толстого» клиента - на сервере реализованы главным образом функции доступа к данным, а все прикладные вычисления выполняются на «клиентских» программах, т.е. сервер только отбирает нужные данные и пересылает их на рабочую станцию, где и выполняется их обработка. Результаты обработки пересылаются назад серверу для сохранения их в общей базе данных;
• модель «тонкого» клиента - значительная часть прикладной обработки данных выполняется непосредственно на сервере, а на рабочую станцию будут передаваться данные для просмотра в экранных формах и результаты выполнения отчетов.
Применение технологий «клиент-сервер» тесно связано с техническим обеспечением банковской технологии. Рассмотрим особенности этого взаимодействия с точки зрения организации комплекса технических средств банка.
На современном этапе все большее число банков имеет тенденцию к территориальной диверсификации. Это означает, что банк имеет ряд филиалов, находящихся в различных регионах страны, а иногда и за рубежом, а также ряд отделений или подразделений в пределах одного города, но находящихся на значительном отдалении друг от друга.
Как правило, территориально локализованные подразделения банка и головная организация, в которой сосредотачиваются основные органы управления банком, имеют локальные вычислительные сети, позволяющие организовать процесс обмена информацией и данными внутри подразделения. Локальные вычислительные сети помимо средств передачи данных включают рабочие станции, т.е. персональные компьютеры, на которых работают сотрудники подразделения, и серверы, т.е. компьютеры, на которых хранятся данные и которые обеспечивают процессы обмена и обработки информации и данных. Кроме того, в состав технического обеспечения также входит аппаратура связи, которая может состоять из отдельного коммуникационного сервера и модемов или из более сложного комплекса технических средств, включающих маршрутизаторы, коммутаторы, модемы и распределительные шкафы.
С помощью средств связи реализуется обмен данными между подразделениями кредитной организации и объединение всех вычислительных средств банка в единую глобальную корпоративную сеть (ГКС). Связь между территориями может осуществляться по некоммутируемым проводным каналам, оптоволоконным каналам, радио- и спутниковым каналам, а также в редких случаях с использованием телефонных коммутируемых соединений. База данных банка может быть реализована по двум основным архитектурам: как единая централизованная база данных и как распределенная по уровням (филиалам) вычислительной сети. В первом случае база данных хранится на достаточно мощном и высокопроизводительном центральном сервере (или интегрированной группе серверов) вычислительной системы, доступ к которой осуществляется по каналам связи со стороны удаленных пользователей. Во втором случае база данных ведется как на сервере центрального отделения, так и на серверах филиалов, при этом базы данных могут автоматически синхронизироваться.
В настоящее время помимо простого обмена информацией ГКС необходима еще для создания единого информационного вычислительного пространства, которое позволяет повысить качество обмена информацией и мощность ее обработки, а соответственно и качество собственно банковской технологии. Как правило, центральным вычислительным узлом и управляющим центром ГКС является вычислительный (или процессинговый) центр банка, в котором сосредоточены основные мощности по обработке банковских данных и информации.
ЛЕКЦИЯ 16. ОБЩИЕ ВОПРОСЫ ОБЕСПЕЧЕНИЯ ТЕХНОЛОГИИ И СИСТЕМ
Банковская технология представляет собой взаимоувязанную совокупность видов обеспечения, каждый из которых раскрывает сущность и состав ресурсов, реализующих функциональные задачи и необходимых для функционирования всей банковской системы. К их числу относятся информационное, техническое, программное, организационное, математическое, эргономическое, правовое и другие виды обеспечения.
Информационное обеспечение включает в себя единую систему классификации и кодирования экономической информации, унифицированную систему банковской документации, схем информационных потоков, циркулирующих в банке, а также методы и принципы построения, состав и содержание баз данных.
Техническое обеспечение - комплекс технических средств сбора, хранения, передачи, обработки и представления информации, необходимых и использующихся для обеспечения работоспособности и эффективности функционирования технологии (системы).
Программное обеспечение - совокупность программ, реализующих функции и задачи банковской системы. В состав программного обеспечения входят операционные системы (клиентские и серверные), серверное программное обеспечение, системы программирования, включающие языки программирования, трансляторы с этих языков и средства конструирования программ, сервисное программное обеспечение, программное обеспечение СУБД, пользовательское (или прикладное) программное обеспечение.
Организационное обеспечение объединяет порядок организационных отношений и перечень функций, которые должна выполнять каждая структурная единица, участвующая в технологии, будь то банковское управление или отдельный сотрудник. Основой организационного обеспечения кредитной организации является перечень функций, которые осуществляет кредитная организация.
Математическое обеспечение включает в себя совокупность математических методов, экономико-математических моделей и алгоритмов задач банковской технологии.
Эргономическое обеспечение - комплекс методов и средств, позволяющих обоснованно сформировать требования к рабочим местам, условиям работы банковских служащих и обеспечивающих быстрейшую подготовку и высокоэффективную деятельность каждого сотрудника, участвующего в технологии.
Правовое обеспечение регламентирует процесс создания и функционирования системы и определяет, каким образом необходимо выполнять функции участникам технологии. Оно включает совокупность нормативных актов, устанавливающих и закрепляющих договорные отношения разработчика и заказчика в процессе создания и функционирования системы, различные внутренние инструкции кредитной организации, а также инструкции ЦБ РФ (далее - ЦБ) и ФКЦБ, законодательные акты РФ.