Практическая работа № 3 «Теоремы сложения

И умножения вероятностей»

Основные понятия и определения.

Пусть Практическая работа № 3 «Теоремы сложения - student2.ru - пространство элементарных событий рассматриваемого опыта. Для каждого возможного в этом опыте события А выделим совокупность всех элементарных событий, наступление которых необходимо влечёт наступление А. Эти элементарные события благоприятствуют появлению А. Множество этих элементарных событий обозначим тем же символом А, что и соответствующее событие.

Таким образом, событие А состоит в том, что произошло одно из элементарных событий, входящих в указанное множество А. Мы отождествляем событие А и соответствующее ему множество А элементарных событий.

Событие называется достоверным, если оно наступает в результате появления любого элементарного события. Обозначение: Практическая работа № 3 «Теоремы сложения - student2.ru .

Невозможным назовём событие, не наступающее ни при каком элементарном событии. Обозначение: Æ.

Пример.В опыте с кубиком достоверным является событие, что выпадет число, меньшее 7. Невозможным – выпадет отрицательное число.

Суммой (или объединением) двух событий А и В назовём событие А+В (или АÈВ), происходящее тогда и только тогда, когда происходит или А, или В. Сумме событий А и В соответствует объединение множеств А и В. Очевидные соотношения: А+Æ=А, А+ Практическая работа № 3 «Теоремы сложения - student2.ru = Практическая работа № 3 «Теоремы сложения - student2.ru , А+А=А.

Пример.Событие «выпало чётное» является суммой событий: выпало 2, выпало 4, выпало 6.

Произведением (или пересечением) двух событий А и В назовём событие АВ (или АÇВ), которое происходит тогда и только тогда, когда происходит и А, и В. Произведению событий А и В соответствует пересечение множеств А и В.

Очевидные соотношения: АÆ=Æ, А Практическая работа № 3 «Теоремы сложения - student2.ru =А, АА=А.

Пример.«Выпало 5» является пересечением событий: выпало нечётное и выпало больше 3-х.

Два события назовём несовместными, если их одновременное появление в опыте невозможно, т.е. АВ=Æ.

Пример.Выпало чётное число и выпало нечётное число – события несовместные.

Событие Практическая работа № 3 «Теоремы сложения - student2.ru назовём противоположным к А, если оно происходит тогда и только тогда, когда А не происходит. Очевидные соотношения: А+ Практическая работа № 3 «Теоремы сложения - student2.ru = Практическая работа № 3 «Теоремы сложения - student2.ru , А Практическая работа № 3 «Теоремы сложения - student2.ru =Æ, Практическая работа № 3 «Теоремы сложения - student2.ru =А.

Пример.Выпало чётное число и выпало нечётное число – события противоположные.

Разностью событий А и В назовём событие А\В, происходящее тогда и только тогда, когда происходит А, но не происходит В. Очевидные соотношения: Практическая работа № 3 «Теоремы сложения - student2.ru = Практическая работа № 3 «Теоремы сложения - student2.ru \А, А\В=А Практическая работа № 3 «Теоремы сложения - student2.ru .

Операции сложения и умножения обладают следующими свойствами: А+В=В+А, АВ=ВА, А(В+С)=АВ+АС, А(ВС)=(АВ)С.

Пример.Производится два выстрела по цели. Пусть событие А – попадание в цель при первом выстреле и В – при втором, тогда Практическая работа № 3 «Теоремы сложения - student2.ru и Практическая работа № 3 «Теоремы сложения - student2.ru - промах соответственно при первом и втором выстрелах. Обозначим поражение цели событием С и примем, что для этого достаточно хотя бы одного попадания. Требуется выразить С через А и В.

Решение.Цель будет поражена в следующих случаях: попадание при первом и промах при втором; промах при первом и попадание при втором; попадание при первом и втором выстрелах. Перечисленные варианты можно соответственно записать: А Практическая работа № 3 «Теоремы сложения - student2.ru , Практическая работа № 3 «Теоремы сложения - student2.ru В и АВ. Интересующее нас событие заключается в наступлении или первого, или второго, или третьего вариантов (хотя бы одного), то есть

С= А Практическая работа № 3 «Теоремы сложения - student2.ru + Практическая работа № 3 «Теоремы сложения - student2.ru В+АВ.

С другой стороны, событие Практическая работа № 3 «Теоремы сложения - student2.ru , противоположное С, есть промах при двух выстрелах, то есть Практическая работа № 3 «Теоремы сложения - student2.ru , отсюда искомое событие С можно записать в виде С= Практическая работа № 3 «Теоремы сложения - student2.ru Практическая работа № 3 «Теоремы сложения - student2.ru .

Вероятность противоположного события Практическая работа № 3 «Теоремы сложения - student2.ru определяется по формуле: р( Практическая работа № 3 «Теоремы сложения - student2.ru )=1- р(А).

Для несовместных событий вероятность суммы двух событий вычисляется по формуле:

р(А+В)=р(А)+р(В).

Пример.Завод производит 85% продукции первого сорта и 10% - второго. Остальные изделия считаются браком. Какова вероятность, что взяв наудачу изделие, мы получим брак?

Решение.Р=1-(0,85+0,1)=0,05.

Вероятность суммы двух любых случайных событий равна р(А+В)=р(А)+р(В)-р(АВ).

Пример.Из 20 студентов 5 человек сдали на двойку экзамен по истории, 4 – по английскому языку, причём 3 студента получили двойки по обоим предметам. Каков процент студентов в группе, не имеющих двоек по этим предметам?

Решение.Р = 1 - (5/20 + 4/20 - 3/20) = 0,7 (70%)

Условной вероятностью события В при условии, что событие А произошло, называется

Практическая работа № 3 «Теоремы сложения - student2.ru

Пример.В урне лежит N шаров, из них n белых. Из неё достают шар и, не кладя его обратно, достают ещё один. Чему равна вероятность того, что оба шара белые?

Решение.Обозначим А – событие, состоящее в том, что первым вынули белый шар, через В событие, состоящее в том, что первым вынули чёрный шар, а через С событие, состоящее в том, что вторым вынули белый шар; тогда

Практическая работа № 3 «Теоремы сложения - student2.ru ; Практическая работа № 3 «Теоремы сложения - student2.ru ; Практическая работа № 3 «Теоремы сложения - student2.ru ; Практическая работа № 3 «Теоремы сложения - student2.ru ; Практическая работа № 3 «Теоремы сложения - student2.ru

Пример.Из 30 экзаменационных билетов студент подготовил только 25. Если он отказывается отвечать по первому взятому билету (которого он не знает), то ему разрешается взять второй. Определить вероятность того, что второй билет окажется счастливым.

Решение.Пусть событие А заключается в том, что первый вытащенный билет оказался для студента «плохим», а В – второй – «хорошим». Поскольку после наступления события А один из «плохих» уже извлечён, то остаётся всего 29 билетов, из которых 25 студент знает. Отсюда искомая вероятность равна Р(В/А)=25/29.

Вероятность произведения:

p(AB)=p(A)*p(B|A)=p(B)*p(A|B).

Пример.По условиям предыдущего примера найти вероятность успешной сдачи экзамена, если для этого студент должен ответить на первый билет, или, не ответив на первый, обязательно ответить на второй.

Решение.Пусть события А и В заключаются в том, что соответственно первый и второй билеты «хорошие». Тогда Практическая работа № 3 «Теоремы сложения - student2.ru - появление «плохого» билета в первый раз. Экзамен будет сдан, если произойдёт событие А, или одновременно Практическая работа № 3 «Теоремы сложения - student2.ru и В. То есть искомое событие С – успешная сдача экзамена выражается следующим образом: С=А+ Практическая работа № 3 «Теоремы сложения - student2.ru В. Отсюда

р(С)=р(А+ Практическая работа № 3 «Теоремы сложения - student2.ru В)=р(А)+р( Практическая работа № 3 «Теоремы сложения - student2.ru В)=р(А)+р( Практическая работа № 3 «Теоремы сложения - student2.ru )р(В/ Практическая работа № 3 «Теоремы сложения - student2.ru )=25/30+5/30*25/29=0,977

или

р(С)=1 - р( Практическая работа № 3 «Теоремы сложения - student2.ru )=1 - р( Практическая работа № 3 «Теоремы сложения - student2.ru * Практическая работа № 3 «Теоремы сложения - student2.ru )=1 - р( Практическая работа № 3 «Теоремы сложения - student2.ru )* р( Практическая работа № 3 «Теоремы сложения - student2.ru / Практическая работа № 3 «Теоремы сложения - student2.ru )=1 -5/30*4/29=0,977

Случайные события А и В назовём независимыми, если

р(АВ)=р(А)*р(В).

Пример.Рассмотрим предыдущий пример сурной, содержащей N шаров, из которых n белых, но изменим опыт: вынув шар, мы кладём его обратно и только затем вынимаем следующий. А – событие, состоящее в том, что первым вынули белый шар, В – событие, состоящее в том, что первым вынули чёрный шар, а С – событие, состоящее в том, что вторым вынули белый шар; тогда

Практическая работа № 3 «Теоремы сложения - student2.ru ; Практическая работа № 3 «Теоремы сложения - student2.ru ; Практическая работа № 3 «Теоремы сложения - student2.ru ; Практическая работа № 3 «Теоремы сложения - student2.ru ; Практическая работа № 3 «Теоремы сложения - student2.ru ;

Наши рекомендации