Основное уравнение квантовой механики

1926г. УрШредингера. Основное уравнение квантовой механики - student2.ru

m- масса частицы.

Основное уравнение квантовой механики - student2.ru

E- полная энергия частицы.

Основное уравнение квантовой механики - student2.ru - пси-функция (волновая функция).

Основное уравнение квантовой механики - student2.ru - оператор Лапласа. Основное уравнение квантовой механики - student2.ru

С помощью Основное уравнение квантовой механики - student2.ru описывается поведение микрочастицы в данный момент времени. Основное уравнение квантовой механики - student2.ru , так как это поведение носит вероятностный характер, то с помощью Основное уравнение квантовой механики - student2.ru надо умерь рассчитывать вероятность обнаружения микрочастицы в данном объеме пространства. А, так как вероятность действительная и положительная, то за меру вероятности берут не саму Основное уравнение квантовой механики - student2.ru , а квадрат ее модуля.

Основное уравнение квантовой механики - student2.ru - плотность вероятности (вероятность [W] обнаружения частицы в данный момент времени в единичном объеме)

Основное уравнение квантовой механики - student2.ru ; Основное уравнение квантовой механики - student2.ru - вероятность достоверного события.

Итак. Решив уравнение, получаем значение Основное уравнение квантовой механики - student2.ru ; зная ее можем рассчитать вероятность нахождения частицы в данный момент времени в данном объеме пространства. Чтобы Основное уравнение квантовой механики - student2.ru была объективной характеристикой поведения микрочастицы, она должна обладать следующими свойствами:

1. Непрерывность. Разрыв Основное уравнение квантовой механики - student2.ru может приводить к неверным результатам при расчете вероятности.

2. Однозначность, чтобы не было неоднозначности при расчете вероятности.

3. Конечность, потому что вероятность не мож быть > 1.

В теории дифференциального уравнения подобного типа (2-го порядка частных производных) доказывается, что решения, удовлетворяющие свойствам непрерывности, имеют место только при определенных значениях параметра, входящего в это уравнение. Таким параметром в данном уравнении является Е (энергия микрочастицы). Следовательно, из уравнения Шредингера без каких-либо постулатов вытекает дескретный ряд значений полной энергии микрочастицы.

Применение уравнения (1) к атому H2.

Основное уравнение квантовой механики - student2.ru

Решение уравнения дает:

1. Значение энергии. Основное уравнение квантовой механики - student2.ru ; n=1,2,3…

2. Значение волновой функции. Основное уравнение квантовой механики - student2.ru

dV- объем, в котором находится частица.

dW- вероятность нахождения частицы в заданном объеме.

Т.к. электрон в атоме имеет три степени свободы (i=3), то Основное уравнение квантовой механики - student2.ru является функцией трех квантовых чисел ( Основное уравнение квантовой механики - student2.ru ).

n- главное квантовое число (n=1,2,3…).

l- азимутальное (орбитальное) квантовое число (l=0,1,2,…,n-1). l принимает n различных значений.

m- магнитное квантовое число ( Основное уравнение квантовой механики - student2.ru ). m принимает 2l+1 различных значений.

Сколько может быть различных состояний электрона с одним и тем же значением n?

Основное уравнение квантовой механики - student2.ru Не может быть двух состояний (электронов), в которых все квантовые числа одинаковые.

Под термином: «различные квантовые состояния» понимаются состояния, которые отличаются значение хотя бы одного квантового числа.

Основное уравнение квантовой механики - student2.ru Это есть принцип Паули для электрона в атоме (n2).

( Основное уравнение квантовой механики - student2.ru )-обозначение двух противоположных направления собственных спиновых моментов (Mzs).

Состояние с l=0 называется s–состоянием; с l=2 называется р–состоянием; с l=3 называется d–состоянием.

Наши рекомендации