Методические указания по выполнению заданий

СОДЕРЖАНИЕ

Введение
Рекомендации по оформлению контрольной работы
Методические указания по выполнению заданий
Варианты контрольных работ
Примерные тесты к экзамену (зачету)
Библиографический список

ВВЕДЕНИЕ

Целью изучения студентами курса «Статистика» является приобретение навыков в области методологии статистического анализа экономической информации. Статистика служит инструментом в работе экономистов высшей квалификации: менеджеров, бухгалтеров, аудиторов, финансистов и других.

В результате изучения дисциплины студенты должны:

-знать принципы и методы сбора статистической информации;

-владеть методикой ее обобщения;

-выполнять статистический анализ данных;

-уметь интерпретировать полученные результаты и обоснованно формулировать выводы.

РЕКОМЕНДАЦИИ ПО ОФОРМЛЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Контрольная работа выполняется с целью закрепления и проверки знаний, полученных студентами в процессе самостоятельного изучения учебного материала, а также для выявления их умения применять на практике методы статистики.

Приступая к выполнению работы, необходимо ознакомиться с соответствующими разделами курса, изучить рекомендованную литературу, уделить особое внимание методике построения и технике расчета и анализа статистических показателей.

К выполнению контрольной работы предъявляются следующие требования.

1. Работа выполняется в рукописном или печатном вариантах, обязательно приводится номер задания, текст условия задач.

2. Решение следует начинать с теоретического обоснования и приведения необходимых формул.

3. Расчеты должны быть развернутыми, содержать пояснения.

4. Если возможны несколько методов расчета того или иного показателя, следует применять наиболее простой из них, указав при этом и другие способы решения.

5. Проверка правильности выполнения расчетов должна осуществляться на основе взаимосвязи показателей с учетом их экономического содержания.

6. Все записи следует делать разборчиво, используя лишь общепринятые сокращения слов.

7. Расчет относительных величин следует производить с точностью до 0,001 (до 0,1 процента).

8. При необходимости решения задач оформляются с использованием статистических таблиц и графиков, которые следует строить в соответствии с правилами, принятыми в статистике.

9. По результатам расчетов должны быть сделаны краткие выводы.

10. Страницы работы должны быть пронумерованы; для замечаний рецензента оставляются поля. После рецензирования необходимые исправления выполняются в конце работы после рецензии.

11. В заключении работы необходимо привести список использованной литературы, поставить свою подпись и указать дату выполнения.

Вариант заданий выбирается в соответствии с начальной буквой фамилии студента.

Начальная буква фамилии студента Номер варианта
А, Б, В
Г, Д Е, Ж, 3
И, К, Л, М
Н, О, П, Р
С, Т, У, Ф
Ц, Ч, Ш, Щ, Э, Ю, Я

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ЗАДАНИЙ

Задача 1предполагает освоение студентами важнейшего статистического метода изучения взаимосвязей общественных явлений - аналитических группировок.

На основе аналитической группировки определяют наличие и направление связи между изучаемыми признаками. Группировка строится по факторному признаку, оказывающему влияние на связанные с ним результативные признаки. Число выделяемых групп определяется в соответствии с условием конкретной задачи. При группировке с равными интервалами величина интервала определяется по формуле

методические указания по выполнению заданий - student2.ru ,

где методические указания по выполнению заданий - student2.ru и методические указания по выполнению заданий - student2.ru - соответственно наибольшее и наименьшее значения группировочного признака в совокупности

к - число выделяемых групп.

Например, по данным задачи 1, вариант № 1, величина интервала составит:

методические указания по выполнению заданий - student2.ru

Каждая из выделенных групп характеризуется показателями, соответствующими условиям задач. Результаты группировки оформляются в виде статистической таблицы. Например, макет групповой таблицы задачи 1, вариант № 1, будет иметь следующий вид:

Таблица1

Группировка предприятий отрасли по среднегодовой стоимости

основных фондов и объему продукции

Группы предприятий по среднегодовой стоимости основных фондов, млн. руб. Число предприятий     Среднегодовая стоимость основных фондов, млн. руб. Объем продукции, млн. руб. Фондоотдача, руб.
всего в среднем на 1 предприятие всего в среднем на 1 предприятие
А ni ∑xi методические указания по выполнению заданий - student2.ru методические указания по выполнению заданий - student2.ru ∑yi методические указания по выполнению заданий - student2.ru методические указания по выполнению заданий - student2.ru
             
             
Итого n ∑∑xi методические указания по выполнению заданий - student2.ru ∑∑yi методические указания по выполнению заданий - student2.ru методические указания по выполнению заданий - student2.ru

По результатам группировки необходимо сделать вывод о том, как с изменением факторного признака по выделенным группам изменяются значения результативного признака.

Выполнение задачи 2 позволит студентам овладеть методикой расчета относительных величин плана; реализации плана; динамики; структуры; сравнения; интенсивности; координации.

Задачи 3-4 предполагают вычисление количественных характеристик статистических рядов распределения: средних величин, показателей вариации и показателей структурных различий.

При расчете средней величины в интервальном ряду распределения необходимо определить середину каждого интервала как среднюю арифметическую простую из его границ. Величина открытых интервалов (где указана только одна, нижняя или верхняя граница) условно принимается равной величине соседнего закрытого интервала. Далее расчет осуществляется по формуле средней арифметической взвешенной

методические указания по выполнению заданий - student2.ru

где хi - середины интервалов;

т - число повторений значений признака.

Следует иметь в виду, что в качестве веса отдельных вариант могут быть использованы не только абсолютные значения частот, но и относительные - частости (доли, проценты к итогу).

Колеблемость признака в совокупности характеризуют показатели вариации:

- среднее линейное отклонение определяется как средняя из абсолютных значений отклонений отдельных вариант от их средней величины:

методические указания по выполнению заданий - student2.ru

- среднеквадратическое отклонение рассчитывается как корень квадратный из дисперсии. Дисперсия представляет собой среднюю из квадратов отклонений отдельных вариант от их средней величины:

σ2 = методические указания по выполнению заданий - student2.ru

- коэффициент вариации определяется по формуле

V = σ/ методические указания по выполнению заданий - student2.ru *100

Модой в статистике называют значение признака, которое наиболее часто встречается в изучаемой совокупности. Для интервального ряда распределения значение моды определяется приближенно по формуле

M0 = x0 + методические указания по выполнению заданий - student2.ru ,

где х0 - нижняя граница модального интервала, то есть интервала, которому соответствует наибольшая частота (частость);

i - величина модального интервала;

m2 - частота или частость модального интервала (наибольшая в ряду распределения);

m1 - частота или частость модального интервала, предшествующая модальному;

m3 - частота или частость интервала, следующего за модальным.

Медиана - значение признака, расположенное в середине ранжированного ряда распределения. Половина единиц совокупности имеет значение признака больше медианы, другая половина - меньше. Для интервального ряда распределения значение медианы рассчитывается по формуле:

Me = методические указания по выполнению заданий - student2.ru

где х0 - нижняя граница медианного интервала (медианный - первый интервал, накопленная частота которого превысила половину общей суммы частот);

i - величина медианного интервала;

∑m - сумма всех частот ряда;

Sme-1 – сумма частот, накопленных до медианного интервала;

m - частота медианного интервала.

Аналогично медиане определяются децили — структурные средние, отделяющие в совокупности десятые части. Дециль первого порядка отделяет 10% единиц с наименьшими значениями признака, дециль девятого порядка – соответственно 10% единиц с наибольшими значениями:

методические указания по выполнению заданий - student2.ru

методические указания по выполнению заданий - student2.ru

Децильный коэффициент дифференциации рассчитывается отношением децили девятого порядка к децили первого порядка.

Наши рекомендации