Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков

Необходимое условие возрастания и убывания функции.

Из определений возрастающей и убывающей функций следует необходимое условие возрастания и убывания функции.

Т. Если дифференцируемая функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru возрастает ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ) на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ее первая производная Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Если диффе-ренцируемая функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ) убывает на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ее первая производная Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Док-во. Пусть дифференцируемая функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru возрастает на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Возьмем произвольную точку Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и дадим ей приращение Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Тогда в силу возрастания функции ее приращение Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Отсюда следует, что величина Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Совершая предельный переход в этом неравенстве при Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , получим Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Аналогично теорема доказывается в случае, когда функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru убывает на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

С геометрической точки зрения возрастающая на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru в каждой точке своего графика характеризуется касательной, которая образует с положительным направлением оси абсцисс острый угол. Если функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru убывает на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то касательная образует с положительным направлением оси абсцисс тупой угол.

Пример Найти интервалы возрастания и убывания функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Из графика этой функции видно, что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Согласно необходимому признаку возрастания и убывания функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru вычислим ее первую производную: Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Эта производная будет отрицательной Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и положительной Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru величиной. Следовательно, в полном соответствии с графиком функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Достаточное условие возрастания и убывания функции.

Т. Пусть функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru непрерывна на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и дифференцируема на интервале Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Если ее первая производная Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то функция возрастает на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Если ее первая производная Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то функция убывает на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Док-во. Пусть первая производная функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Возьмем из этого интервала две любые точки Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru (для определенности примем, что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ). Тогда по теореме Лагранжа на интервале Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru найдется хотя бы одна точка Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru такая, что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Так как на интервале Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , следовательно, Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Таким образом, функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru возрастает на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . В силу произвольности выбранных точек Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru полученное утверждение справедливо для всего сегмента Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Достаточное условие убывания функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru доказать самостоятельно.

Условия постоянства функции на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Т. Пусть функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru непрерывна на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и дифференцируема на интервале Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Если ее первая производная Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то функция постоянна на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Док-во. Пусть первая производная функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Возьмем произвольную точку Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и рассмотрим сегмент Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . На этом сегменте выполняются все условия теоремы Лагранжа, следовательно, Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , где Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Так как по условию теоремы Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то и точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru первая производная функции обращается в ноль. Отсюда получаем, что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . В силу произвольности точки Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru полученное равенство выполняется Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , т.е. функция постоянна на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Минимум и максимум (экстремумы) функции.

Пусть функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru непрерывна в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Опр. Функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru имеет в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru минимум ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ), если существует такая Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru -окрестность точки Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru значение функции в любой другой точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru из Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru -окрестность точки Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru превышает значение функции в самой точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , т.е. выполняется неравенство Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Обозначение Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Опр. Функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru имеет в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru максимум ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ), если существует такая Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru -окрестность точки Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru значение функции в любой другой точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru из Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru -окрестность точки Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru меньше значения функции в самой точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , т.е. выполняется неравенство Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Обозначение Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Пример Найти на заданном графике точки максимума и минимума на рисунке.

Опр. Точки минимума и максимума объединяются под общим названием точки экстремума.

Точки экстремума всегда являются внутренними точками области определения функции.

Не следует путать минимальное значение функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru с наименьшим значением функции на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , максимальное значение функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru – с наибольшим значением функции на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Из определения экстремума следует, что в точке минимума выполняется неравенство Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , а в точке максимума – Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru в некоторой малой Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru -окрестности точки Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Необходимое условие существования экстремума функции.

Т4. Если дифференцируемая функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru имеет в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru экстремум, то ее первая производная в этой точке равна нулю, т.е. Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Док-во. Пусть в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru имеет максимум. Так как функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru дифференцируема в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то в этой точке существует ее первая производная Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . При стремлении Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru (слева) приращение аргумента Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , а приращение функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , следовательно, Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru

Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . При стремлении Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru (справа) приращение аргумента Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , а приращение функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , следовательно, Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Так как производная в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru не может одновременно быть и отрицательной и положительной, то в этой точке она равна нулю, т.е. Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Случай, когда в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru наблюдается минимум, доказать самостоятельно.

Обращение в нуль первой производной функции в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru является необходимым, но не достаточным условием существования экстремума в этой точке. Непрерывная функция может иметь экстремум в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru даже в том случае, когда ее первая производная в этой точке не существует. В этом случае говорят об “острых” экстремумах.

Опр. Точки, в которых первая производная функции обращается в нуль или не существует, называются критическими (стационарными или подозрительными на экстремум).

Всякая точка экстремума является критической точкой, однако не любая критическая точка будет экстремумом.

Пример Доказать, что функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru не имеет экстремума в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

В точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru первая производная функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Однако из графика кубической параболы видно, что в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru она экстремума не имеет. Следовательно, исследуемая точка является критической точкой, но не точкой экстремума.

Первый и второй достаточные признаки существования экстремума.

Первый достаточный признак существования экстремума дается теоремой:

Т1. Если функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru дифференцируема в некоторой окрестности точки Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , кроме может быть самой точки Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , и при переходе через эту точку слева направо ее первая производная меняет свой знак с “+” на “–”, то в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru имеет максимум, а если ее первая производная меняет свой знак с “–” на “+”, то в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru имеет минимум. Если при переходе через точку Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru первая производная не меняет свой знак, то в этой точке экстремума нет.

Второй достаточный признак существования экстремума дается теоремой:

Т2. Если в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru первая производная функци Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru обращается в ноль ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ), а вторая производная существует, непрерывна в некоторой окрестности этой точки и отлична от нуля в самой точке ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ), то в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru наблюдается экстремум. Если при этом Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то точка Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru является точкой минимума, а при Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru – точкой максимума.

Пример. Найти и определить тип экстремумов функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Вычислим первую производную функции и приравняем ее к нулю с целью отыскания критических точек: Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Так как показательная функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Отсюда находим критические точки Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Отложим эти точки на числовой оси и на каждом интервале определим знак первой производной функции, т.е. применим первый достаточный признак существования экстремума: Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru

При переходе слева направо через точку Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru первая производная функция меняет свой знак с “–” на “+”, следовательно, в этой точке наблюдается минимум. При переходе слева направо через точку Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru первая производная функция меняет свой знак с “+” на “–”, следовательно, в этой точке наблюдается максимум. Применим второй достаточный признак существования экстремума, для чего вычислим вторую производную функции: Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Вычислим значение второй производной функции в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru : Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , следовательно, в этой точке функция имеет минимум. Вычислим значение второй производной функции в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru : Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , следовательно, в этой точке функция имеет максимум.

Наименьшее и наибольшее значения функции на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Пусть функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru непрерывна на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и имеет конечное число точек экстремума на этом интервале. Если наибольшее значение функция достигает внутри сегмента, то очевидно, что это будет один из максимумов (аналогично для наименьшего значения – один из минимумов). Однако возможны варианты, когда функция достигает своих наименьшего и наибольшего значений на концах заданного сегмента. Поэтому для отыскания этих значений применяют следующую схему:

1. Находят область определения функции и убеждаются в том, что заданный сегмент входит в эту область.

2. Находят критические точки, для чего решают уравнение Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , и точки, в которых первая производная функции не существует.

3. Вычисляют значения функции в критических точках, принадлежащих заданному сегменту, в точках, в которых первая производная функции не существует и на концах заданного сегмента.

4. Из полученных чисел выбирают наименьшее Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и наибольшее Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Пример Найти наименьшее и наибольшее значения функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Действуя согласно вышеприведенной схеме, находим:

1. Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Следовательно, функция определена и непрерывна на заданном сегменте.

2. Вычислим первую производную Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Производная существует на всей числовой оси, поэтому найдем критические точки Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Отсюда находим, что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

3. Вычислим значение функции в критических точках и на концах заданного сегмента: Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

4. Из полученных чисел выбираем наименьшее Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и наибольшее Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , которые определяют наименьшее и наибольшее значения функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru на сегменте Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Выпуклость и вогнутость графика функции. Точки перегиба.

Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Опр. График функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru называется выпуклым на интервале Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , если он лежит ниже любой касательной, проведенной к графику этой функции на заданном интервале.

Опр. График функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru называется вогнутым на интервале Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , если он лежит выше любой касательной, проведенной к графику этой функции на заданном интервале.

Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Достаточные условия выпуклости и вогнутости графика функции на том или ином интервале определяются теоремой:

Т3. Если вторая производная функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru на интервале Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru существует и положительна, то на этом интервале график функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru будет вогнутым. Если вторая производная функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru на интервале Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru существует и отрицательна, то на этом интервале график функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru будет выпуклым.

Пример Определить интервалы вогнутости и выпуклости графика функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Найдем вторую производную от заданной функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . В силу того, что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то график функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru будет вогнутым на всей числовой оси.

Пример Определить интервалы вогнутости и выпуклости графика функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Найдем вторую производную от заданной функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . В силу того, что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то график функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru будет выпуклым при отрицательных значениях аргумента и вогнутым при положительных значениях аргумента.

Опр. Точка, отделяющая вогнутую часть графика функции от выпуклой (или выпуклую часть графика функции от вогнутой), называется точкой перегиба.

Выясним необходимые и достаточные условия существования точек перегиба.

Необходимое и достаточное условия существования точки перегиба.

Рассмотрим необходимое условие существования точки перегиба.

Т. Если функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru дважды непрерывно дифференцируема на некотором интервале, содержащем точку перегиба Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то в точке перегиба вторая производная равна нулю, т.е. Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Обращение в нуль второй производной функции в точке перегиба является необходимым, но не достаточным условием существования такой точки на графике функции.

Пример Доказать, что точка Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru не является точкой перегиба графика функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Если вычислить вторую производную от заданной функции, то она будет равна Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Если приравнять это выражение к нулю, то получим, что точка Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru должна быть точкой перегиба графика функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Однако график этой функции на всей числовой оси является вогнутым, т.е. точка Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru не является точкой перегиба графика функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . В связи с этим рассмотрим достаточное условие существования точки перегиба.

Т. Пусть функция Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru дважды непрерывно дифференцируема на некотором интервале, вторая производная которой в точке Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , принадлежащей этому интервалу, обращается в нуль ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ) или не существует. Если при переходе через точку Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru вторая производная функции меняет свой знак, то точка Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru определяет точку перегиба графика функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Пример Найти точки перегиба и интервалы выпуклости и вогнутости графика функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Найдем вторую производную заданной функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Найдем точки подозрительные на перегиб: а) Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru б) Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru – не существует Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru знаменатель дроби обращается в ноль при Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Отложим эти точки на числовой оси и определим знак второй производной на каждом интервале:

Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru

Из рисунка видно, что точка Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru является точкой перегиба, так как при переходе через нее вторая производная изменяет свой знак. Точка Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru не является точкой перегиба, так как при переходе через нее вторая производная не изменяет своего знака.

Асимптоты графика функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

В большинстве практических случаев необходимо знать поведение функции при неограниченном росте (убыли) аргумента. Одним из наиболее интересных случаев, которые возникают при таком исследовании, является случай, когда график функции неограниченно приближается к некоторой прямой.

Опр. Прямая ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ): Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru называется асимптотой графика функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , если расстояние от переменной точки графика до этой прямой стремится к нулю при стремлении аргумента Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , т.е. Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

График функции может приближаться к асимптоте сверху, снизу, слева, справа или колеблясь возле этой прямой. Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru

Различают вертикальные, горизонтальные и наклонные асимптоты.

Опр. Вертикальная прямая Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru называется вертикальной асимптотой, если Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Горизонтальная прямая Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru называется горизонтальной асимптотой, если Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Прямая Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru называется наклонной асимптотой (параметр Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и параметр Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru отличаются от Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ).

Горизонтальная асимптота является частным случаем наклонной асимптоты: если Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то наклонная асимптота вырождается в горизонтальную Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , при условии, что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Если параметр Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , то горизонтальной асимптоты нет.

Полная схема исследования функции с помощью производных.

Из изложенного ранее материала следует следующая схема исследования функции с помощью производных:

1. Находят область определения функции. При наличии точек разрыва II рода изучают поведение функции в их малой окрестности, т.е. вычисляют лево- и правосторонние пределы. При задании функции словесным образом также вычисляют лево- и правосторонние пределы для граничных точек интервалов, на которых функция описывается разными формулами.

2. Находят точки пересечения с координатными осями.

3. Определяют четная, нечетная или общего вида заданная функция.

4. Определяют периодическая или непериодическая заданная функция.

5. Находят критические точки, решая уравнение Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , и определяют точки, в которых первая производная функции не существует. Точки откладывают на числовой оси и определяют знак первой производной на каждом интервале, определяя тем самым интервалы возрастания ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ) и убывания ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ) функции. Используя первый достаточный признак существования экстремума, находят точки экстремума и вычисляют значение функции в этих точках.

6. Находят точки подозрительные на перегиб, решая уравнение Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , и определяют точки, в которых вторая производная функции не существует. Точки откладывают на числовой оси и определяют знак второй производной на каждом интервале, определяя тем самым интервалы вогнутости ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ) и выпуклости ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ) функции. Используя достаточный признак существования точки перегиба, находят точки перегиба и вычисляют значение функции в этих точках.

7. Находят асимптоты графика функции.

8. Результаты исследования заносят в сводную таблицу.

9. По данным таблицы строят схематичный график функции.

З4. При нахождении области определения функции надо помнить о действиях, запрещенных в области действительного переменного:

– нельзя делить на нуль, поэтому выражение, стоящее в знаменателе дроби, не должно равняться нулю;

– нельзя извлекать корень четной степени из отрицательного числа, поэтому выражение, стоящее под корнем четной степени, должно быть неотрицательным ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru );

– основание логарифмической функции должно быть строго положительным и не равным единице;

– выражение, стоящее под логарифмом, должно быть строго положительным;

– выражение, стоящее под знаком Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru или Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , по модулю не должно превышать единицу ( Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru ).

Пример Исследовать и построить схематичный график функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

Используя схему исследования графика функции с помощью производных, найдем:

1. Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

2. Найдем точки пересечения графика функции с координатными осями

Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , т.е. Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru – точка пересечения с осью абсцисс;

Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , т.е. Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru – точка пересечения с осью ординат.

3. Вычислим Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru – функция общего вида.

4. Функция непериодическая.

5. Найдем первую производную функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , которая существует на всей числовой оси, следовательно, найдем критические точки, решая уравнение Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Отложим найденную точку на числовой оси и определим знак первой производной на каждом интервале Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru

Из рисунка видно, что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Так как при переходе слева направо через точку Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru первая производная меняет свой знак с “–” на “+”, то в этой точке наблюдается минимум. Вычислим значение функции в минимуме Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

6. Найдем вторую производную функции Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru , которая существует на всей числовой оси, следовательно, найдем точки, подозрительные на перегиб, решая уравнение Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Отложим найденную точку на числовой оси и определим знак второй производной на каждом интервале

Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru

Из рисунка видно, что Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru и Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Так как при переходе слева направо через точку Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru вторая производная меняет свой знак, то в этой точке наблюдается точка перегиба. Вычислим значение функции в точке перегиба Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

7. Найдем асимптоты графика функции, для чего вычислим угловой коэффициент прямой Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Таким образом, при Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru асимптот нет, а при Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru возможна горизонтальная асимптота. Вычислим параметр Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru . Следовательно, график заданной функции имеет горизонтальную асимптоту Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru .

8. Построим сводную таблицу

Интервал Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru
Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru   Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru
Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru   Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru
Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru

Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru – точка пересечения с координатными осями.

Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru – горизонтальная асимптота.

9. Построим схематичный график функции, выбрав по координатным осям разные масштабы измерения

Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков - student2.ru

Лекция 9. Первообразная и неопределенный интеграл. Основные свойства неопределенного интеграла. Таблица интегралов. Методы интегрирования: непосредственное интегрирование, метод разложения, метод замены переменной.

Наши рекомендации