Средние статистические величины

Анализ данных правовой статистики невозможен без использования средних величин и связанных с ними показателей вариации. Только при помощи средних величин можно охарактеризовать совокупности по количественному варьирующему признаку, по которому их принято сравнивать.

Средней величиной в статистике называется обобщенная характеристика совокупности однородных явлений по какому-либо одному количественно варьирующему признаку в условиях места и времени.

Она обычно обобщает количественную вариацию признака. За любой средней величиной скрывается ряд распределения единиц совокупности по изучаемому признаку, т. е. вариационный ряд.

Одним из важных условий расчета средних величин является качественная однородность единиц совокупности в отношении осредняемого признака. Средние величины, которые вычислены для явлений разного типа, представляют собой фикцию. Они могут искажать или стирать различия разнородных совокупностей.

Практически и теоретически в криминологии, социологии права и других юридических дисциплинах допустимы в основном групповые средние, т. е. средние, которые вычислены на основе адекватных статистических группировок.

Средние величины базируются на массовом обобщении фактов. Только так они способны выявлять те или иные тенденции, которые лежат в основе наблюдаемого процесса. Средние величины отражают самую общую закономерность, которая присуща всей массе изучаемых явлений. Она видна в типичной количественной характеристике, так называемой средней величине всех варьирующих показателей.

Средние статистические величины имеют несколько видов, но все они входят в класс степенных средних, т. е. средних, построенных из различных степеней вариантов: средняя арифметическая, средняя гармоническая, средняя квадратическая, средняя геометрическая и т. д.

При расчете различных степенных средних все основные показатели, на основе которых осуществляется расчет, не изменяются.

Разные виды средних при одних и тех же исходных показателях имеют

в связи с различными значениями степени далеко не одинаковые численные значения.

Чем меньше степень средней, тем меньше значение, соответствующее средней – это закономерность. Поэтому каждая средняя приведенного ряда мажорантна в отношении средних, которые стоят справа от нее. Все это называется правилом мажорантности средних.

Выбор обычной средней или взвешенной осуществляется статистическим материалом, а выбор вида степенной – целью исследования.

Кроме средних степенных, в правовой статистике применяются средние структурные, в качестве которых выступают мода и медиана.

Самым распространенным видом средней величины является средняя арифметическая. Она рассчитывается очень просто: сумму величин всех вариантов делят на общее число единиц вариантов.

Средняя арифметическая при дискретном вариационном ряде исчисляется по формуле средней арифметической взвешенной. Она не имеет принципиальных отличий от простой средней арифметической. В ней лишь суммирование одного и того же значения заменено умножением этого значения на его частоту. Таким образом, каждое значение взвешивается по частоте встречаемости. Когда частоты исчисляются сотнями и тысячами, то использование средней взвешенной намного упрощает расчет.

При расчете средней арифметической совсем не обязательно знать величину каждого индивидуального значения или иметь в своем распоряжении построенный на основе этих вариант вариационный ряд.

В официальной отчетности юридических учреждений обычно уже имеются многие суммарные величины. Суммирование происходит последовательно

в районах, городах, субъектах Федерации и в центре при сводке и группировке данных, которые получены из документов первичного учета.

Расчет средней на основе обобщенных в отчете данных осуществим, когда каждое отдельное значение варианты вообще не фиксируется. Поэтому можно сказать, что между средними и относительными величинами иногда

не существует строгих границ. Все они являются обобщающими. Кроме того, любая средняя величина представляет собой своеобразное отношение

двух абсолютных величин, т. е. она одновременно является определенной относительной величиной. Но, с другой стороны, любая относительная величина дает своеобразную усредненную характеристику процесса.

Существуют некоторые особенности и трудности для расчета средней арифметической при интервальном ряде статистических показателей, т. е. когда индивидуальные численные варианты сгруппированы в интервалы.

Правовая статистика использует интервальные ряды чаще, чем дискретные. Таким образом, учитываются сроки наказания, сроки следствия, сроки рассмотрения уголовных и гражданских дел, возраст правонаруши-телей и т. д.

С целью упрощения расчета средней арифметической можно использо-вать некоторые ее свойства, которые здесь приводятся без доказательств.

1. Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты.

2. Если от каждой варианты отнять или прибавить одно и то же число, то новая средняя уменьшится или увеличится на то же число.

3. Если каждую варианту разделить или умножить на какое-либо число, то средняя арифметическая уменьшится или увеличится во столько же раз.

4. Если все частоты разделить или умножить на какое-либо число, то средняя арифметическая от этого не изменится.

5. Сумма отклонений вариант от средней арифметической всегда равна нулю.

6. Общая средняя равна средней из частных средних, взвешенной по численности соответствующих частей совокупности.

Следующая средняя – средняя геометрическая – используется для вычисления средних темпов роста и прироста (снижения) наблюдаемых процессов. Исследование этих параметров в динамике преступности, выявленных правонарушителей, раскрываемости, судимости, общего числа заключенных, оправданных, освобожденных от уголовной ответственности, рассмотренных гражданских дел, удовлетворенных и неудовлетворенных исков и других меняющихся во времени юридически значимых процессов и явлений имеет важное значение в науке и практике.

Динамика юридически значимых явлений характеризуется многими показателями, среди которых – средние арифметические и геометрические. Средние арифметические показатели используются для расчета среднегодового абсолютного прироста или снижения, выраженного

в именованных числах. Они важны, но их недостаточно, особенно

в сравнительных целях, для достижения которых большую помощь оказывают темпы роста, прироста и снижения, выраженные в процентах. Расчет этих параметров производится по формуле средней геометрической, но на основе все тех же абсолютных показателей.

Для того, чтобы рассчитать среднегодовые темпы роста и прироста, необходимы абсолютные показатели первого и последнего годов, на базе которых рассчитывается относительная величина динамики в процентах и количество лет. В статистических сборниках и официальной отчетности уже имеются подсчитанные общие итоги и даже проценты роста или снижения наблюдаемого процесса. На основе их и числа лет можно легко найти искомые среднегодовые темпы роста и прироста интересующих процессов.

Мода и медиана. Модой в статистике именуется значение варианта, которое чаще всего встречается в данной совокупности. Иногда могут быть распределения, где все варианты встречаются примерно одинаково часто.

В подобных случаях мода не определяется, так как она практически отсутствует. В других распределениях мода может быть не единственной.

Моду применяют в тех случаях, когда нужно охарактеризовать более часто встречающуюся величину признака.

Определение моды для интервального ряда несколько сложнее, так как, чтобы определить моду, требуется определить модальный интервал данных рядов.

Медианой в статистике называется варианта, которая расположена

в середине ранжированного ряда. Она разделяет упорядоченный ряд пополам. По обе стороны от медианы находится одинаковое число единиц совокупности. При определении значения медианы предполагают, что значение признака в интервале расположено равномерно.

Медиана, которая рассчитана для вариационного ряда с существенно различающимися интервалами, отличается от медианы, исчисленной для того же ряда, но с равными интервалами.

В практике мода и медиана порой используются вместо средней арифметической или вместе с ней. При применении вместе они дополняют друг друга, особенно при совокупности небольшого числа единиц с очень малыми значениями исследуемого признака. Как дополнение к средней арифметической также лучше исчислять моду и медиану, которые, в отличие от средней, не зависят от крайних и характерных для совокупности значений признака. Медиану можно использовать в качестве приближенной средней арифметической, когда совокупность ранжирована и упорядочена, тогда медиана определяется по серединному значению варианты. Поэтому значения других вариант можно и не изменять.

Кроме медианного деления вариационного ряда на две равные части,

в статистике используются и более дробные деления: квартили, которые делят вариационный ряд по сумме частот на 4 равные части, децили – на

10 равных частей и центили – на 100 равных частей. Они употребляются для более выразительных и компактных описаний исследуемого процесса, но

в правовой статистике практически не применяются.

Показатели вариации признака. Средние величины представляют собой важную обобщающую характеристику совокупности по изменяющемуся признаку. Подсчитав их, необходимо уяснить, насколько они показательны, типичны или однородны, ведь одинаковые средние могут характеризировать совершенно разнородные совокупности.

Для того чтобы наши суждения о различиях вариационных рядов были статистически точными, нужно прибегать к показателям отклонений различных вариант от средней.

Первый и наиболее простой показатель вариации – это размах вариации, который исчисляется в виде разности между наибольшими и наименьшими значениями варьирующего признака.

Среднее арифметическое отклонение является второй мерой измерения вариаций признака. В статистическом анализе оно применяется довольно редко. Обычно применяют третий показатель вариации – дисперсию, или средний квадрат отклонений.

Путем извлечения квадратного корня из дисперсии мы получим следующий, четвертый, показатель вариации – среднее квадратическое отклонение.

Дисперсия и среднее квадратическое отклонение являются самыми распространенными показателями вариации изучаемого признака. В правовой статистике их используют при сравнительных статистических исследованиях, для обоснования ошибки репрезентативности выборочного наблюдения,

а также при изучении корреляционных и других статистических связей между признаками фактора и признаками следствия или между причиной и следствием.

Коэффициент вариации является пятым по счету показателем вариации. Он, в отличие от размаха вариации, среднего линейного, среднего квадратического отклонения и дисперсии, выражающихся в абсолютных и именованных числах, является показателем относительным. Коэффициент вариации предоставляет много возможностей для сравнительных изучений, потому что сравнивать, например, средние квадратические отклонения вариационных рядов с разными уровнями непосредственно нельзя. Коэффициент вариации в некоторой мере представляется критерием типичности средней. Если он относительно большой, это значит, что типичность этой средней очень невысока, а если, наоборот, – его значение мало, то средняя является типической и надежной.

Наши рекомендации