Использование критерия Т Вилкоксона для решения задачи 5

Сформулируем гипотезы.

H0: Интенсивность положительных сдвигов не превосходит интенсивно­сти отрицательных сдвигов.

H1: Интенсивность положительных сдвигов превосходит интенсивность отрицательных сдвигов.

В Табл. 9.8 нами уже просуммированы ранги "редких", в данном случае, отрицательных, сдвигов. Сопоставляем эти значения с максимальными значениями Т, при которых различия еще могут считаться достоверными (Табл. VI Приложения 1).

Для шкалы "Активное слушание", n=12:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Ответ: H0 отклоняется. Преобладание положительных сдвигов по навыкам активного слушания неслучайно (р<0,05). Для шкалы "Снижение напряжения", n=12:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Ответ: H0 отклоняется. Принимается H1. Преобладание поло­жительных сдвигов по навыку снижения напряжения не является слу­чайным (р<0,01).

Для шкалы "Аргументация", n=9:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

тэмп=0

тэмпкр

Ответ: H0 отвергается. Принимается H1. Преобладание поло­жительных сдвигов по навыкам аргументации неслучайно (р<0,01).

Итак, участники ощущают значимые положительные сдвиги по всем трем группам коммуникативных навыков.

В данном случае критерий Т доказал свою большую мощность по сравнению с критерием знаков. Он подтвердил ранее установленные различия на высоком уровне значимости (р<0,01) и позволил выявить их для шкалы "Активное слушание" (р<0,05).

Однако мы не можем интерпретировать полученные результаты в терминах эффективности тренинга по меньшей мере по двум причинам:

1) у нас не было контрольной группы, у которой измерялись бы те же показатели с тем же интервалом времени;

2) показатели самооценки после тренинга могли отражать желание испытуемых косвенно поблагодарить тренера за его работу.

Несмотря на это, все-таки есть смысл ответить на второй вопрос задачи, проверив, различаются ли между собой величины сдвигов по трем разным шкалам. Со всеми возможными поправками на индивидуальные тенденции к завышению или занижению самооценок, различия в сдвигах все же отражают относительную эффективность тренинговых воздействий по трем направлениям.

Вопрос 2: Произошли ли по трем видам навыков разные сдвиги или эти сдвиги для разных навыков примерно одинаковы?

Величины сдвигов получены по трем разным шкалам для одной и той же выборки испытуемых. Для того, чтобы определить, различаются ли величины сдвигов, полученных по трем шкалам, применимы критрии χ2r Фридмана и L Пейджа.

Таблица 9.9

Сдвиги в оценках уровня развития коммуникативных навыков и их ранги (n=12)

Код имени Оценка Признак 1: Активное слушание Признак 2: Снижение эмоционального напряжения Признак 3: Аргументация
  Оценка Ранг Оценка Ранг Оценка Ранг
Ис. 1,5 1,5
Я.
Ин.
Р.
К. –24 2.5 1,5 2,5
Н. 1,5 1,5
Ен. 1,5 1,5
Ле. –1 2,5 2,5
Ли. 2,5 2,5
Т. 1,5 1,5
Ет. –1 –2
Б 1,5 1,5
Суммы 25 (21) 24,5 (18,5) 22,5 (14,5)
Средние 1,25 1,58 1,25
                                                   

_____________

4 Отрицательную величину считаем меньшей величиной и приписываем ей, соот­ветственно, меньший ранг. Может получиться так, что большую величину ранга -третий ранг - получит значение 0, как это имеет место у испытуемого Ет. (№11). В каком-то смысле при двух отрицательных сдвигах третий нулевой сдвиг является положительным, но это можно и оспаривать. Поэтому целесообразно рассчитать значение L отдельно для всех испытуемых и для тех испытуемых, у кого нет отри­цательных сдвигов (п=9). Соответствующие суммы приведены в скобках.

Проранжируем сдвиги по трем шкалам для каждого испытуемого (Табл. 9.9). Ранжирование, как мы помним, производится по строкам.

Поскольку количество замеров с=3, т. е. меньше 6, а количество испытуемых гг=12, мы можем остановить выбор на критерии тенденций L Пейджа. Такая возможность благоприятна, так как критерий L по мощ­ности превосходит критерий χ2r (см., например, задачу 3 и ее решение).

Проверим соответствие сумм рангов расчетным суммам. Сумма рангов по всей выборке составляет 25+24,5+22,5=72. Расчетная сумма:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Сумма рангов по усеченной выборке (n=9) составляет 21+18,5+14,5=54. Расчетная сумма:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

В обоих случаях суммы рангов совпадают с расчетными, мы мо­жем перейти к дальнейшим действиям.

Сформулируем гипотезы, ориентируясь на значения ранговых сумм;

H0: Тенденция к меньшему сдвигу по шкале "Аргументация", проме­жуточному сдвигу по шкале "Снижение напряжения" и большему сдвигу по шкале "Активное слушание" является случайной.

H1: Тенденция к меньшему сдвигу по шкале "Аргументация", промежу­точному сдвигу по шкале "Снижение напряжения" и большему сдвигу по шкале "Активное слушание" не является случайной.

Определим эмпирические значения критерия L по всей выборке в целом:

Lэмп =∑(Tj·j)=(22,5·1)+(24,5·2)+(25·3)=22,5+49+75=146,5

По Табл. VIII Приложения 1 определяем критические значения L для п=12, с=3:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Lэмп =146,5

Lэмп < Lкр

H0 принимается.

Определим эмпирическое значение критерия L для усеченной выборки:

Lэмп =(14,5 · 1)+(18,5 · 2)+(21 · З)=14,5+37+63=114,5

Определяем по Табл.VIII Приложения 1 критические значения L при n =9:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Lэмп =114,5

Lэмп < Lкр

H0 принимается.

Ответ: H0 принимается и для полной, и для усеченной выборки. Тенденция к меньшему сдвигу по шкале "Аргументация", промежуточ­ному сдвигу по шкале "Снижение напряжения" и наибольшему сдвигу по шкале "Активное слушание" является случайной.

Итак, общий вывод таков: сдвиги в показателях по трем видам коммуникативных навыков достоверны, но указать, в каком из видов навыков участники ощущают больший сдвиг, а в каком - меньший, на основании этих данных невозможно.

Вопрос 3: Уменьшается ли расхождение между "идеальным" и реальным уровнями владения навыками после тренинга?

Сокращение расхождения между индивидуальным идеалом и са­мооценкой - один из главных показателей эффективности психотерапев­тического воздействия (Rogers С.,1961,р.236; Роджерс К.,1995,с.292). Сближение самооценки реального Я и идеального Я происходит в большинстве случаев аа счет повышения реальной самооценки, но мо­жет снизиться и уровень идеальных требований к себе благодаря пере­ключению на более реалистичные и менее "наказующие" цели.

Итак, мы проверяем, оказал ли тренинг психотерапевтическое воздействие на участников. Как правило, испытуемые не предполагают, что у них измеряется не абсолютный уровень самооценки или "идеала" и, даже, не расхождение между ними, а расхождение между расхожде­ниями, сдвиг в величине этого расхождения после тренинга. Можно предположить, что этот показатель более объективно отражает проис­ходящие изменения. По крайней мере, он в меньшей степени подверг­нут влиянию фактора социальной желательности.

Поскольку мы сопоставляем 2 разных представляемых или умо­зрительных условия измерения на одной и той же выборке испытуемых и по одному и тому же набору показателей, применимы критерии зна­ков и Т Вилкоксона.

Поскольку расхождения варьируют в достаточно широком диапа­зоне - от 3 до 5, целесообразнее использовать критерий Т Вилкоксона.

В Табл. 9.10 по каждой шкале представлены 4 показателя: рас­хождение между идеальным и реальным уровнями до тренинга, после тренинга, разность между расхождениями "после" и "до" и ранги этих разностей (сдвигов).

Таблица 9.10

Сдвиг в величинах расхождения между "идеалом" и реальным уровнем развития коммуникативных навыков

Код имени частника   Активное слушание Снижение напряжения Аргументация
До после Сдвиг (после -до) Ранг сдвига до после Сдвиг Ранг (после сдвига — до) до после Сдвиг (после -до) Ранг сдвига
Ис. 3.5 -1 3,5
Я. - 3,5
Ин. -1 3,5 -1 3,5
Р. -1 3,5
К. 4,5 - 3,5
Н. -1 -1 3,5 -1 3,5
Ен. -4 -3 -2
Ле. - -
Ли. -1 -1 3.5
Т. - - 3,5
Ет. 4,5 3,5
Б. _ -5
Всего сдвигов                  
Типичный сдвиг Отрицательный Отрицательный Отрицательный
Сумма ран­гов нетипич­ных сдвигов             10,5       10.5

В Табл. 9.10 выделены величины нетипичных, более редко встречающихся, сдвигов, и ранги их абсолютных значений. Мы видим, что большинство сдвигов - это нулевые или отрицательные сдвиги. Это означает, что расхождение между идеалом и самооценкой чаще умень­шается или остается на прежнем уровне, чем увеличивается. Однако нас сейчас интересует именно уменьшение расхождения между идеаль­ным и реальным Я, а поэтому все нулевые сдвиги придется исключить из рассмотрения.

Сформулируем гипотезы.

H0: Сближение идеального и реального уровней навыков после тре­нинга не является преобладающей тенденцией.

H1: Сближение идеального и реального уровней навыков после тренинга является преобладающей тенденцией.

Сближение выражается в отрицательном, типичном, сдвиге рас­хождения между идеальным и реальным уровнями.

По Табл. V Приложения 1 определяем критические значения критерия Т и сопоставляем их с эмпирическими значениями. По шкале "Активное слушание"", n=6:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Tэмп = 9

Tэмп > Tкр

Нд принимается.

По шкале "Снижение напряжения", n=8:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Tэмп = 10,5

Tэмп > Tкр

Но принимается.

По шкале "Аргументация", п=7:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Tэмп = 10,5

Tэмп > Tкр

Но принимается.

Ответ: Т - критерий Вилкоксона не позволяет отвергнуть нуле­вую гипотезу. Уменьшение расхождения между идеальным и реальным уровнями навыков не является доминирующей тенденцией.

Исследователь может утешать себя тем, что в процессе тренинга участники ощутили новые горизонты развития... Действительно, про­изошли достоверные положительные сдвиги не только в оценке реаль­ного уровня владения коммуникативными навыками (см. выше), но и достоверные положительные сдвиги в оценке идеального уровня. Кроме того, в исследованиях К. Роджерса речь идет не о самооценке уровня владения коммуникативными навыками, ао более глубоких аспектах личностной самооценки в методе Q - сортировки. Учитывая малый объ­ем выборки, полученный результат можно считать лишь предваритель­ным.

Решения задач Главы 4

Решение задачи 6

Вопрос 1: Можно ли утверждать, что разные картины методики Хекхаузена обладают разной побудительной силой в отношении моти­вов: а) "надежда на успех"; б) "боязнь неудачи"?

Для того, чтобы ответить на этот вопрос, необходимо сопоставить распределение реакций "надежда на успех" и реакций "боязнь неудачи" с равномерным распределением. Тем самым мы проверим, равномерно ли распределяются реакции "надежды на успех" по шести картинам и равно­мерно ли распределяются реакции "боязни неудачи" по шести картинам.

Количество наблюдений достаточно велико, чтобы мы могли ис­пользовать любой из классических критериев - χ2 или λ. Однако, как мы помним, картины в данном исследовании предъявлялись разным испытуемым в разных последовательностях, следовательно, мы не мо­жем говорить об однонаправленном изменении признака в какую-либо одну сторону: все разряды (картины) следуют друг за другом в слу­чайном порядке. Это является веским основанием для применения кри­терия χ2 и отказа от критерия λ.

Рассмотрим оба аспекта поставленного вопроса последовательно.

А) Равномерно ли распределяются реакции "надежды на успех" по шести картинам методики Хекхаузена?

H0: Распределение реакций "надежды на успех" не отличается от рав­номерного распределения.

H1: Распределение реакций "надежды на успех" отличается от равно­мерного распределения.

Рассчитаем теоретические частоты для равномерного распределе­ния по формуле:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

где n - количество наблюдений,

k - количество разрядов.

В данном случае количество наблюдений - это количество реак­ций "надежды на успех" у 113 испытуемых. Таких реакций зарегистри­ровано 580, следовательно, n =580. Количество разрядов - это количе­ство стимульных картин, следовательно, k=6. Определяем fтеор:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Количество степеней свободы V определяем по формуле:

v= k -l=6-l=5

Итак, поправка на непрерывность не нужна, мы можем произво­дить все расчеты по общему алгоритму. Они представлены в Табл.9.11.

Таблица 9.11

Расчет критерия χ2 при сопоставлении распределения реакций "надежды на успех" по 6 картинам с равномерным распределением

Разряды-картины методики Эмпирические частоты реакций "надежды на успех" fэ Теоретические частоты реакции "надежды на успех" fт fэ- fт (fэ- fт)2 (fэ- fт)2/ fт
          "Мастер изме­ряет деталь" "Преподаватель и ученик" "В цехе у машины" "У двери ди­ректора" "Человек в бюро" "Улыбающийся юноша"           96,67   96,67   96,67   96,67   96,67   96,67 9,33   5,33 11,33   -46,67   2,33   18,33 87,05   28,41   128,37   2178,09   5,43   335,99 0,90   0,29   1,33   22,53   0,06   3,48
Суммы     28,59
             

По Табл. IX Приложения 1 определяем критические значения χ2 дляv=5:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Построим "ось значимости".

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

χ2эмп = 28,59

χ2эмп > χ2кр

Ответ: H0 отклоняется. Принимается H1. Распределение реак­ций "надежды на успех" по шести картинам методики Хекхаузена от­личается от равномерного распределения (р<0,01).

Б) Равномерно ли распределяются реакции "боязни неудачи" по шести картинам методики Хекхаузена?

H0: Распределение реакций "боязни неудачи" не отличается от равно­мерного распределения.

H1: Распределение реакций "боязни неудачи" отличается от равномер­ного распределения.

В данном случае количество наблюдений - это число реакций "боязни неудачи", следовательно, n=516; количество разрядов - это число стимульных картин, как и в предыдущем случае, следовательно, k=6. Определяем fтеор

fтеор =516/6=86

Количество степеней свободы v=k—1=6—1=5. Поправка на не­прерывность здесь тоже, естественно, не нужна.

Все дальнейшие расчеты проделаем по алгоритму в таблице.

Таблица 9.12

Расчет критерия при сопоставлении распределения реакций "боязни неудачи" по 6 картинам с равномерным распределением

Разряды-картины методики Эмпирические частоты реакций "боязни неудачи" fэ Теоретические частоты реакции "боязни неудачи" fт fэ- fт (fэ- fт)2 (fэ- fт)2/ fт
          "Мастер изме­ряет деталь" "Преподаватель и ученик" "В цехе у машины" "У двери ди­ректора" "Человек в бюро" "Улыбающийся юноша"                         -52     -29   -66           31,44   102.74   31,44   0.01   9.78   50,65
Суммы 226,06
             

Критические значения χ2при v=5 по Таблице IX Приложения 1 нам уже известны:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

χ2эмп > χ2кр

Ответ: H0 отклоняется. Принимается H1. Распределение прояв­лений "боязни неудачи" по шести стимульным картинам отличается от равномерного распределения (р<0,01).

Итак, реакции "надежды на успех" и реакции "боязни неудачи" неравномерно проявляются в ответ на 6 стимульных картин. Однако это еще не означает, что эти картины являются неуравновешенными по направленности воздействия. Может оказаться так, по крайней мере теоретически, что одни и те же картины вызывают большинство реакций обоих типов, а другие картины почти не вызывают реакций или вызывают их достоверно меньше. В этом случае оба эмпирических распределения отличались бы от равномерного, но не различались бы между собой.

Проверим, различаются ли картины теперь уже не по количеству вы­зываемых реакций, а по их качеству, то есть вызывают ли одни картины скорее реакции "надежды на успех", а другие - реакции "боязни неудачи"

Вопрос 2: Можно ли считать стимульный набор методики Хекхаузена неуравновешенным по направленности воздействия?

Решим эту задачу двумя способами: а) путем сравнения распре­деления реакций "надежда на успех" с распределением реакций "боязнь неудачи" по 6-и картинам; б) путем сопоставления распределения реак­ций на каждую картину с равномерным распределением.

Выясним, совпадают ли распределения реакций по двум карти­нам. Для этого сформулируем гипотезы.

H0: Распределения реакций "надежда на успех" и реакций "боязнь не­удачи" не различаются между собой.

H1: Распределения реакций "надежда на успех" и "боязнь неудачи" различаются между собой.

Для того, чтобы облегчить себе задачу подсчета теоретических частот, воспроизведем таблицу эмпирических частот и дополним ее.

Таблица 9.13

Эмпирические и теоретические частоты распределения реакций "надежда на успех" и "боязни неудачи"

Разряды - картины Эмпирические частоты Суммы Теоретические частоты Суммы
Реакций "надежда на успех" Реакций "боязнь неуда­чи"     Реакций "надежда на успех" Реакций "боязнь неуда­чи"
          "Мастер измеря­ет деталь" "Преподаватель и ученик" "В цехе у маши-   "У двери дирек­тора"   "Человек в бюро"   "Улыбающийся юноша"             А   В   д   ж   и   л           Б   Г   Е     К   M           129,1   149,2   75,1   72,5   82,6   71,4 А   В   Д   Ж   И   Л 114,9   132,8   66,9   64,5   73,4   63,6 Б   Г   Е     К   М          
Суммы
                       

Расчет теоретических частот осуществляется по известной нам формуле:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Произведем расчеты.

fА теор=244·580/1096=129,1

fБ теор=244·516/1096=114,9

fВ теор=282·580/1096=149,2

fГ теор=282·516/1096=132,8

fД теор=142·580/1096=75,1

fЕ теор=142·516/1096=66,9

fЖ теор=137·580/1096=72,5

fЗ теор=137·516/1096=64,5

fИ теор=156·580/1096=82,6

fК теор=156·516/1096=73,4

fЛ теор=135·580/1096=71,4

fМ теор=135·516/1096=63,6

По Табл. 9.13 мы видим, что сумма всех теоретических частот равна общему количеству наблюдений, а попарные суммы теоретических частот по строкам равны суммам наблюдений по строкам.

Расчеты критерия χ2будем производить по известному алгоритму. Поправка на непрерывность не вносится, так как v>1:

v=(r-l)(c-l)=(6-l)(2-l)=5

Результаты всех операций по Алгоритму 13 представлены в Табл. 9.14.

Таблица 9.14

Расчет критерия χ2при сопоставлении эмпирических распределений реакций "надежды на успех" (НУ) и "боязни неудачи" (БН)

Ячейки таблицы частот Эмпирическая частота fэ Теоретическая частота fт fэ- fт (fэ- fт)2 (fэ- fт)2/ fт
А 129,1 -23,1 533,61 4,13
Б 114,9 23,1 533,61 4,64
В 149,2 -47,2 2227,84 14,93
Г 132,8 47,2 2227,84 16,78
Д 75,1 32,9 1082,41 14,41
Е 66,9 -32,9 1082,41 16,18
Ж 72,5 -22,5 506,25 6,98
64,5 22,5 506,25 7,85
И 82,6 16,4 268,96 3,26
К 73,4 -16,4 268,96 3,66
Л 71,4 43,6 1900,96 26,62
М 63,6 -43,6 1900,96 29,89
Суммы ,   149,33

Критические значения χ2при v=5 нам уже известны:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Построим "ось значимости".

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

χ2эмп > χ2кр

Ответ: H0 отвергается. Принимается H1. Распределения реакций "надежды на успех" и "боязни неудачи" различаются между собой.

Теперь выясним, совпадают ли распределения реакций по каждой картине. Сформулируем гипотезы.

H0: Реакции двух видов в ответ на картину №1 (№2, №3 ... №6) распределяются равномерно.

H1: Реакции двух видов в ответ на картину №1 (№2, №3 ... №6) распределяются неравномерно.

Реакции "надежды на успех" будем обозначать как НУ, реакции "боязни неудачи" - как БН.

Подсчитаем теоретические частоты для каждой из шести картин, по формуле:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

где n общее количество реакций обоих направлений на данную картину; k - количество разрядов, в данном случае количество видов реакции (k =2).

f1 теор =244/2=121;

f2 теор =282/2=141;

f3 теор =142/2=71;

f4 теор =137/2=68,5

f5 теор =156/2=78

f6 теор =135/2=67,5

В данном случае число степеней свободы v=l:

v=k—1=2—1=1.

Следовательно, мы должны сделать во всех шести случаях по­правку на непрерывность. Проведем расчеты отдельно для каждой кар­тины (см. Табл. 9.15).

Таблица 9.15

Расчет критерия χ2при сопоставлении распределений реакций на каж­дую из шести картин с равномерным распределением

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Определим по Табл. IX Приложения 1 критические значения для v=l:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Ответ: H0 отклоняется для всех картин. H1принимается для картин 2, 3, 4, 5 и 6: реакции двух видов в ответ на эти картины рас­пределяются неравномерно.

Если представить данные графически (Рис. 9.2), то легко можно видеть, что картины №6, №3 и №5 вызывают достоверно больше реакций "надежды на успех", а картины №2, №1 и №4 - достоверно больше реакций "боязни неудачи".

Стимульный набор методики Х. Хекхаузена оказался неуравнове­шенным по направленности стимулирующего воздействия.

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Рис. 9.2. Соотношения частот реакций "надежда на успех" (незаштрнхованные столбн-ки) н реакций "боязнь неудачи" (заштрихованные столбики) по разным картинам мето­дики Х.Хекхаузена

Вместе с тем, из Рис. 9.2 мы можем заметить, что если частоты реакций "боязни неудачи" достаточно монотонно возрастают при пере­ходе от картины №6 к картине №3, а затем к №5, №4, №1 и №2, то частоты реакций "надежда на успех" по всем картинам, за исключе­нием картины №4, оказываются примерно на одном уровне, в диапазо­не от 99 до 115. Каждый исследователь сам для себя решает вопрос о том, что для него важнее - абсолютные показатели стимулирующего воздействия или их соотношения. Метод у} поможет ему решить зада­чи и первого, и второго типа.

Решение задачи 7

Вопрос 1: Можно ли утверждать, что распределение запретов не является равномерным?

Поскольку количество разрядов (запретов) k>3, иперечень из пяти запретов представляет собой номинативную шкалу, мы можем ис­пользовать только критерий χ2.

Если бы участники тренинга называли разные запреты с одина­ковой частотой, то каждый из пяти запретов встречался бы равноверо­ятно с остальными.

Сформулируем гипотезы.

H0: Распределение частот встречаемости пяти запретов не отличаетсяот равномерного распределения.

H1: Распределение частот встречаемости пяти запретов отличается от равномерного распределения.

Определим fтеор по формуле:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

где n - общее количество наблюдений, в данном случае назван­ных запретов (n =281); k - количество категорий запретов (k =5).

fтеор =281/5=56,2

Определим число степеней свободы v:

v = k -l=5-l=4.

Поправки на непрерывность делать не требуется. Все расчеты представим в таблице, строго следуя Алгоритму 13.

Таблица 9.16

Расчет критерия χ2при сопоставлении эмпирического распределения частот встречаемости 5-и психологических запретов с равномерным распределением

Разряды - вид запрета Эмпирическая частота fэ Теоретическая частота fт fэ- fт (fэ- fт)2 (fэ- fт)2/ fт
1, Не давай психологических поглаживаний 2. Не принимай... 3. Не проси... 4. Не отказывайся... 5. Не давай себе...     56,2     56,2 56,2 56,2 56,2 -12,2     -11,2 +41,8 +1,8 -20,2 148,8     125,4 1747,2 3,2 408,0 2,65     2,23 31,09 0,06 7,26
Суммы   43,29

Определим критические значения χ2по Таблице IX Приложения 1 для v=4:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Построим "ось значимости"

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Ответ: χ2эмп > χ2кр (р≤0,01)

H0 отклоняется. Принимается H1. Распределение частот встре­чаемости пяти психологических запретов отличается от равномерного распределения (р<0,01).

Вопрос 2: Можно ли утверждать, что запрет "Не проси" встре­чается достоверно чаще остальных?

Для того, чтобы ответить на этот вопрос, мы можем попробовать сопоставить запрет "Не проси" последовательно со всеми остальными запретами, объединяя их попарно.

H0: Распределение выборов между запретами "Не проси" и "Не да­вай" не отличается от равномерного распределения.

H1: Распределение выборов между запретами "Не проси" и "Не давай" отличается от равномерного распределения.

Аналогичные гипотезы могут быть сформулированы для всех остальных пар запретов.

При сопоставлении двух запретов число разрядов k=2, следовательно, количество степеней свободы v=k—1=1. Это означает, что нам необходимо делать поправку на непрерывность.

Рассчитаем теоретические частоты для каждой из сопоставляемых пар запретов.

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

где п - сумма частот, приходящихся на данную пару запретов; k - количество сопоставляемых категорий запретов (k=2).

Определим теоретические частоты для всех возможных пар запретов.

fтеор 1-2=(44+45)/2=44,5

fтеор 1-3=(44+98)/2=71

fтеор 1-4=(44+58)/2=51

fтеор 1-5=(44+36)/2=40

fтеор 2-3=(45+98)/2=71,5

fтеор 2-4=(45+58)/2=51,5

fтеор 2-5=(45+36)/2=40,5

fтеор 3-4=(98+58)/2=78

fтеор 3-5=(98+36)/2=67

fтеор 4-5=(58+36)/2=47

Теперь подсчитаем значения критерия χ2 (Табл. 9.17).

Таблица 9.17. Расчет значений критерия при попарном сопоставлении частот запретов

Сопоставляемые виды запретов Эмпирические частоты fэ Теоретические частоты fт (fэ – fт) (|fэ – fт| -O,5) (|fэ – fт| -O,5)2 (|fэ – fт| -O,5)2 __________ fт
  «Не давай» «Не принимай Суммы   44,5 44,5   99,0 -0,5 + 0,5    
  «Не давай» «Не проси» Суммы 71,0 71,0 142,0 -27,0 + 27,0 26,5 26,5 702,25 702,25 9,89 9,89 19,78
  «Не давай» «Не отказывайся» Суммы   51,0 51,0   102,0 -7,0 + 7,0   6,5 6,5 42,25 42,25 0,83 0,83   1.66
  «Не давай» «Не давай себе» Суммы   40,0 40,0   80,0 + 4,0 -4,0   3,5 3,5 12,25 12,25 0,31 0,31   0,62
  «Не принимай» «Не проси» Суммы   71,5   71,5 143,0 -26,5   +26,5 26,0   26,0 676,00   676,00 9,45   9,45 18,90
«Не принимай» «Не отказывайся» Суммы     51,5   51,5   103,0 -6,5   + 6,5   6,0   6,0 36,00   36,00 0,70   0,70   1,40
2 5 «Не принимай» «Не давай себе» Суммы     40,5   40,5   81,0 + 4,5   -4,5   4,0   4,0 16,00   16,00 0,40   0,40   0,80
3 4 «Не проси» «Не отказывайся» Суммы   78,0 78,0   156,0 + 20,0 -20,0   19,5 19,5 380,25 380,25 4,88 4,88   9,76
3 5 «Не проси» «Не давай себе* Суммы   67,0 67,0   134,0 + 31,0 -31,0   30,5 30,5 930,25 930,25 13,88 13,88   27,76
4 5 «Не отказывайся» «Не давай себе» Суммы     47,0   47,0   94,0 + 11,0   -11,0   10,5   10,5 110,25   110,25 2,35   2,35   4,70

Определим критические значения χ2для v =l:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Построим "ось значимости".

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Мы видим, что в некоторых случаях χ2эмп > χ2кр, а в некоторых - χ2эмп < χ2кр.

Мы можем суммировать полученные данные, построив матрицу, в которой какими-либо знаками будет отмечено, являются ли различия между данной парой запретов достоверными или недостоверными. На­пример, это могут быть указания на уровень значимости различий.

Запреты 1 запрет 2 запрет 3 запрет 4 запрет 5 запрет
1 запрет p<0,01
2 запрет   р<0,01
3 запрет     р<0,01 р<0,01
4 запрет       p<0,05
5 запрет        

Итак, выявлены достоверные различия в частоте встречаемости запрета 3 по сравнению со всеми остальными запретами (р<0,01 во всех четырех случаях) и запрета 4 по сравнению с запретом 5 (р<0,05).

Ответ: Hq отклоняется для пар запретов 1—3, 2—3, 3—4, 3—5 (р<0,01) и пары 4—5 (р<0,05). Запрет "Не проси психологических поглаживаний от других людей" встречается достоверно чаще, чем все остальные четыре запрета (р<0,01). Запрет "Не давай психологических поглаживаний самому себе" встречается реже, чем запрет "Не отказы­вайся от психологических поглаживаний, даже если они тебе не нравят­ся" (р<0,05). Обсуждение этих данных представлено в другой работе (Сидоренко Е. В., 1995, с. 65-67).

Решение задачи 8

Вопрос 1: Различаются ли распределения предпочтений, выявлен­ные по каждому из четырех типов мужественности, между собой?

Для выявления различий между четырьмя распределениями лучше всего применить критерий χ2. Критерий λне применим по трем причи­нам: 1) n<50; 2) разряды представляют собой номинативную шкалу, так как при переходе от типа к типу изменяется "качество", а не "количество" мужественности; 3) критерий λ позволяет сопоставлять только 2 распределения одновременно, а в нашу задачу входит одно­временное сопоставление четырех распределений.

Сформулируем гипотезы.

H0: Распределения предпочтений, выявленные по четырем типам муже­ственности, не различаются между собой.

H1: Распределения предпочтений, выявленные по четырем типам муже­ственности, различаются между собой.

Рассчитаем теоретические частоты для каждой ячейки таблицы эмпирических частот (Табл. 9.18) по формуле:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

fА теор =31-31/124=7.75

fБ теор =31-31/124=7,75 и т. д.

Поскольку суммы по всем строкам и столбцам таблицы равны, теоретические частоты для всех 16-ти ячеек таблицы будут одинаковы­ми. Равенство же по строкам и столбцам объясняется тем, что каждая испытуемая совершала принужденный выбор, так что каждый из типов мужественности был выбран 31 раз (даже если он был "выбран на последнее место).

Эта задача напоминает шутливый литературный пример, в кото­ром одна невеста совершала выбор из четырех женихов. В данном же случае у нас 31 испытуемая, и каждая совершает выбор из четырех ти­пов мужественности, распределяя их по четырем позициям.

Определим количество степеней свободы V для четырех типов мужественности (k) и четырех позиций выбора (с):

v=(k-l)-(c-l)=(4-l) (4-l)=3·3=9

Все дальнейшие расчеты произведем в таблице по Алгоритму 13 без поправки на непрерывность, так как при v>1 она не требуется.

Таблица 9.18

Расчет критерия χ2при сопоставлении распределений четырех типов мужественности по четырем позициям (n=31)

Разряды- типы мужественности Позиции выбора Эмпирическая частота fэ Теоретическая частота fт fэ- fт (fэ- fт)2 (fэ- fт)2/ fт
1. Мифологически тип 7,75 -5,75 33,063 4,266
7,75 -1,75 3,063 0,395
7,75 -3,75 14,063 1,815
7,75 +11,25 126,563 16,331
2. Национальный ТИП 7,75 +11,25 126,563 16,331
7,75 -3,75 14,063 1,815
7,75 -0,75 0,563 0,073
7,75 -6,75 45,563 5,879
3, Современный ТИП 7,75 -0,75 0,563 0,073
7,75 +2,25 5,063 0,653
7,75 +4.25 18,063 2,331
7,75 -5,75 33,063 4,266
4, Религиозный ТИП 7,75 -4,75 22,563 2,911
7,75 +3,25 10,563 1,362
7,75 +0,25 0,063 0,008
7,75 +1,25 1,563 0,202
Суммы   124,0   58,711

По Табл. IX Приложения 1 определяем критические значения χ2 при V=9:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Ответ: H0 отвергается. Принимается H1. Распределения пред­почтений по четырем типам мужественности различаются между собой.

Вопрос 2. Можно ли утверждать, что предпочтение отдается ка­кому-то одному или двум типам мужественности? Наблюдается ли ка­кая-либо групповая тенденция предпочтений?

В данном случае удобнее всего применить критерий χ2r Фридма­на (см. Главу 3). Как мы помним, он позволяет выявить изменения в величине признака при переходе от одного условия к другому. По-видимому, еще более целесообразным было бы применить тест тенден­ций L Пейджа, но при n>12 это можно сделать только с помощью специальных ухищрений (см. Задачу 4 и ее решение).

Критерий χ2r позволяет определить, достоверным ли образом различаются суммы рангов, полученные по каждому из рассматривае­мых условий, в данном случае - по каждому типу мужественности.

При этом ранги начисляются отдельно по каждому испытуемому, а суммируются - по каждому условию. В нашем случае нет необходи­мости что-то ранжировать, так как каждая испытуемая своими выбора­ми фактически уже проранжировала четыре исследуемых типа мужест­венности. Суммы рангов по каждому типу мужественности можно под­считать, умножая значение ранга на количество рангов с данным значе­нием. Например, из Табл. 9.18 следует, что Мифологический тип 2 раза оказался в первой позиции. Значит, сумма рангов по 1-й позиции будет равна: 1·2=2. На второй позиции он оказался 6 раз, следователь­но, сумма рангов по 2-й позиции равна: 2·6=12 и т. д. Произведем расчеты в таблице. Для 3-й позиции Мифологического типа сумма рангов составит 3·4=12, а для 4-й: 4·19=76. Теперь определяем общую сумму рангов Мифологического типа: 2+12+12+76=102.

Таблица 9.19

Расчет ранговых сумм по четырем типам мужественности (n=31) для подсчета критерия χ2r.

Значение ранга Типы мужественности
Мифологический Национальный Современный Религиозный
faj faj·rj faj faj·rj faj faj·rj faj faj·rj
                 

Суммы рангов

Сформулируем гипотезы.

H0: Различия в позициях, которые занимают каждый из четырех типов мужественности, случайны,

H1: Различия в позициях, которые занимают каждый из четырех типов мужественности, неслучайны. Определим эмпирическую величину χ2r по формуле:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

где с - количество условий, в данном случае типов мужественности; п - количество испытуемых; Тj - суммы рангов по каждому из условий.

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Критические значения определяем по Табл. IX Приложения 1, поскольку при больших п χ2r имеет распределение, сходное с распреде­лением χ2, а существующие таблицы χ2r предназначены только для n≤9.

Количество степеней свободы определим так же, как мы это де­лали при расчете критерия χ2:

v =( k -l)(c-l)=(4-l) (4~l)=3·3=9

При v=9 критические значения χ2r составляют:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Ответ: Но отвергается. Принимается H1. Различия в позициях, которые занимает каждый из четырех типов мужественности, неслучай­ны (р<0,01). При этом на первом месте оказывается Национальный тип, на втором - Современный, на третьем - Религиозный и на четвер­том - Мифологический тип. На Рис. 9.3. групповая система предпочте­ний представлена графически.

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Рис. 9.3. Графики изменения ранговых сумм в последовательности: Национальный тип, Современный тип. Религиозный тип. Мифологический тип; меньшая сумма рангов ука­зывает на большую предпочтительность типа, большая сумма - на меньшую предпочти­тельность

Итак, различия в ранговых местах каждого из рассматриваемых типов мужественности неслучайны. Наблюдается определенная группо­вая тенденция предпочтений. Судя по достаточно монотонному повыше­нию кривой на Рис. 9.3, мы вряд ли можем говорить о резком преоб­ладании какого-либо одного из двух типов мужественности. Для стати­стически достоверного ответа на этот вопрос необходимо сопоставить попарно все типы мужественности по схеме, использованной при реше­нии Задачи 7.

Решения задач Главы 5

Решение задачи 9

Поскольку представлены данные по двум выборкам, мы выбираем критерий Фишера для оценки различий в процентных долях. Будем считать "эффектом" преобладание левого глаза. В исследовании Т.А. Доброхотовой и Н.Н. Брагиной высказывалось предположение о фено­мене предвосхищения у левшей, их способности к "зеркальному" отра­жению не только пространства, но и времени, выражающейся в прогно­стических возможностях и особого рода проницательности (Доброхотова Т.А., Брагина Н.Н., 1994). Интересно поэтому сопоставить выборки прямо по эффекту левшества.

Построим четырехпольную таблицу.

Таблица 9.20

Четырехпольная таблица для расчета критерия φ* при сопоставлении студентов-психологов (nj=14) и студентов-медиков (п2=100) по прицельной способности глаз

Группы "Есть эффект" преобладание левого глаза "Нет эффекта" преобладание правого глаза Суммы
Количество испытуемых % доля Количество испытуемых % ДОЛЯ
1 группа -студенты - психологи 42,9% 57,1%
2 группа -студенты - медики 19% 81%
Суммы    

Сформулируем гипотезы.

H0: Доля лиц с преобладанием левого глаза в группе студентов-психологов не больше, чем в группе студентов-медиков.

H1: Доля лиц с преобладанием левого глаза в группе студентов-психологов больше, чем в группе студентов-медиков. По Табл. XII Приложения 1 определяем φ1 и φ2: Ф1(42.9%)=1.430; ф2(19%)=0,902 Подсчитываем эмпирическое значение φ *:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

Критические значения φ * нам известны:

Использование критерия Т Вилкоксона для решения задачи 5 - student2.ru

φ* эмп > φ* кр (р≤0,05)

Можно и более точно определить уровень значимости для φ эмп=1,84: р=0,033.

Ответ: H0 отклоняется. Доля лиц с преобладанием левого глаза в.группе студентов-психологов больше, чем в группе студентов-медиков (р=0,0ЗЗ).

Возможно, в данном исследовании произошло то, что называется "самоисполняющимися предсказаниями". Студенты-психологи перед началом опыта узнали об идее Брагиной и Доброхотовой о возможных прогностических способностях лиц с преобладанием левшества. Желание выявить у себя столь важные способности могло исказить результаты, несмотря на достаточную объективнос

Наши рекомендации