Тест№2. Классическая система массового обслуживания с очередями

При определенных условиях, накладываемых на систему массового обслуживания с очередями (стационарность, ординарность и отсутствие последействия для потока заявок и для времени выполнения заявок и т. д.) для характеристик системы могут быть получены аналитические выражения. Будем называть такие системы классическими.

Вероятности состояний pk вычисляются по формулам (при условии стационарности, т.е., когда Тест№2. Классическая система массового обслуживания с очередями - student2.ru ):

pk = Тест№2. Классическая система массового обслуживания с очередями - student2.ru , (1)

где p0 = 1/ Тест№2. Классическая система массового обслуживания с очередями - student2.ru . (2)

Вероятность отсутствия очереди poo вычисляется по формуле

poo = p0 Тест№2. Классическая система массового обслуживания с очередями - student2.ru . (3)

Вероятность занятости всех линий обслуживания pзан вычисляется по формуле

pзан = Тест№2. Классическая система массового обслуживания с очередями - student2.ru . (4)

Средняя длина очереди m вычисляется по формуле

m = Тест№2. Классическая система массового обслуживания с очередями - student2.ru pn . (5)

Задание:зная параметры СМО с очередью: Тест№2. Классическая система массового обслуживания с очередями - student2.ru , Тест№2. Классическая система массового обслуживания с очередями - student2.ru , n, найти характеристики системы массового обслуживания: вероятность отсутствия очереди; среднюю длину очереди (в стационарном режиме). Значения параметров системы для различных вариантов задания приведены в таблице:

Номер варианта Тест№2. Классическая система массового обслуживания с очередями - student2.ru Тест№2. Классическая система массового обслуживания с очередями - student2.ru n

Тест № 3 – Классическая система массового обслуживания отказами.

Справочный материал.

Вероятность k – того состояния системы pk вычисляется по формуле

pk = Тест№2. Классическая система массового обслуживания с очередями - student2.ru k Тест№2. Классическая система массового обслуживания с очередями - student2.ru / k! (1)

где Тест№2. Классическая система массового обслуживания с очередями - student2.ru , Тест№2. Классическая система массового обслуживания с очередями - student2.ru = Тест№2. Классическая система массового обслуживания с очередями - student2.ru -1 , k = 0, 1, 2, …, n (2)

Вероятность отказа pотк = pn , то - есть она вычисляется по формуле (1) при k = n. Среднее число занятых устройств m вычисляется по формуле

m = Тест№2. Классическая система массового обслуживания с очередями - student2.ru (1 - pn) (3)

Пример.В локомотивное депо с четырьмя линиями обслуживания (ремонта) поступает поток заявок (локомотивы для ремонта)– в среднем три локомотива в неделю. Среднее время ремонта – две недели. Найти вероятности состояний, вероятность отказа и среднее число занятых линий ремонта.

Решение.Если за единицу времени принять неделю, то из условий задачи мы имеем: Тест№2. Классическая система массового обслуживания с очередями - student2.ru = 3, Тест№2. Классическая система массового обслуживания с очередями - student2.ru = 1 / 2 , Тест№2. Классическая система массового обслуживания с очередями - student2.ru = 6 , n = 4. Поэтому из формул (1) и (2) получаем: Тест№2. Классическая система массового обслуживания с очередями - student2.ru = 1 / (1 + 6 / 1! + 62 / 2! + 63 / 3! + 64 / 4!) = 1 / 115 ,

po = 60 / 115 = 1 /115 , p1 = 6 / 115 , p2 = 62 /115 / 2! =18 / 115 , p3 = 63 / 115 / 3! = 36 / 115 , p4 = 64 / 115 / 4! = 54 / 115 , pотк = p4 = 54 / 115 , среднее число занятых линий ремонта m = 6(1 – 54 / 115) = 366 / 115 Тест№2. Классическая система массового обслуживания с очередями - student2.ru 3.18.

Задание:зная параметры системы массового обслуживания (СМО) с отказами: Тест№2. Классическая система массового обслуживания с очередями - student2.ru - интенсивность потока заявок, Тест№2. Классическая система массового обслуживания с очередями - student2.ru - интенсивность обслуживания, n – число каналов обслуживания, найти характеристики СМО: вероятности состояний p0, p1, p2, … pn; среднее число занятых устройств и вероятность отказа (в стационарном режиме). Значения параметров СМО для различных вариантов задания приведены в таблице:

Номер варианта Тест№2. Классическая система массового обслуживания с очередями - student2.ru Тест№2. Классическая система массового обслуживания с очередями - student2.ru n
0.5
0.5
0.5
1.5
1.9
0.9
1.5
0.5
0.5
0.8
0.8
0.6
1.2
0.5
0.3
1.5
1.8

Тест№2. Классическая система массового обслуживания с очередями - student2.ru

Найти ответ на вопрос: сколько должно быть устройств обслуживания, чтобы вероятность отказа была не более 0,1?

Наши рекомендации