Роль энергетики в развитии человеческого общества

Основные понятия в энергосбережении. Источники энергии. Возобновляемые и истощаемые энергетические ресурсы. Виды топлива

Энергетика– это область человеческой деятельности, связанная с производством, передачей и использованием энергии.

Энергосистема – совокупность энергетических ресурсов всех видов, методов их получения, преобразования, распределения и использования, а также технических средств и организационных комплексов, обеспечивающих снабжение потребителей всеми видами энергии.

Энергия– мера движения и взаимодействия материальных тел.

Мощность– количество энергии в единицу времени, определяющее интенсивность движения и взаимодействия материальных тел. Это скорость изменения энергии.

Топливо– горючие вещества с углеродной основой, используемые для получения тепловой энергии путем их сжигания.

Ядерное топливо – вещества и материалы, используемые для получения энергии в ядерном реакторе.

Энергосбережение– организационная научная, практическая, информационная деятельность государственных органов, юридических и физических лиц, направленная на снижение расхода топливно-энергетических ресурсов в процессе их добычи, переработки, транспортировки, хранения, производства, использования и утилизации.

Топливно-энергетические ресурсы (ТЭР)– совокупность всех природных и преобразованных видов топлива и энергии, используемых в республике.

Возобновляемые энергетические ресурсы – энергетические ресурсы рек, водохранилищ, ветра, солнца, биомассы и другие, возобновляемые в ходе естественных природных процессов.

Вторичные энергетические ресурсы (ВЭР) – энергия, получаемая в ходе любого технологического процесса или процесса жизнедеятельности человека в результате недоиспользования первичной энергии или в виде энергосодержащего побочного продукта основного производства и не применяемая в этом процессе.

Нетрадиционные (альтернативные) источники энергии – источники электрической и тепловой энергии, использующие для ее производства возобновляемые и вторичные энергетические ресурсы.

Эффективное использование ТЭР – использование всех видов энергии экономически оправданными, прогрессивными способами при существующем уровне развития техники и технологий и соблюдении законодательства.

Истощаемые энергетические ресурсы – это накопленные в процессе эволюционного развития нашей планеты в ее недрах запасы веществ и соединений, способные при определенных условиях высвобождать энергию.

Энергетические ресурсы –носители энергии, которые используются в настоящее время или могут быть полезно использованы в перспективе [13].

Энергетические ресурсы являются частью всей совокупности природных ресурсов и подразделяются на восполняемые и невосполняемые. Восполняемыми, или возобновляемыми источниками энергии называ­ются источники, потоки энергии которых постоянно существуют или пе­риодически возникают в окружающей среде и не являются следствием це­ленаправленной деятельности человека. К восполняемым энергоресурсам относят энергию:

– Солнца

– мирового океана в виде энергии приливов и отливов, энергии волн

– рек

– ветра

– морских течений

– вырабатываемую из биомассы

– водостоков

– твердых бытовых отходов

– геотермальных источников

Недостатком возобновляемых источников энергии является низкая сте­пень ее концентрации. Но это в значительной степени компенсируется ши­роким распространением, относительно высокой экологической частотой и их практической неисчерпаемостью. Такие источники наиболее рациональ­но использовать непосредственно вблизи потребителя без передачи энергии на расстояние. Энергетика, работающая на этих источниках, использует по­токи энергии, уже существующие в окружающем пространстве, перераспре­деляет, но не нарушает их общий баланс. Неиспользование потоков энергии возобновляемых источников приводит к ее безвозвратной потере, предопределяет несколько иной подход к оценке эффективности устройств, применяющих эти источники, по сравнению с устройствами, работающими на невозобновляемых ресурсах. К невосполняемым энергетическим ресурсам относят:

– каменный уголь

– нефть

– природный газ

– бурый угль

– горючие сланцы

К сожалению, большинство энергии, потребляемой человеком, превращается в бесполезное топливо из-за низкой эффективности использования имеющихся энергетических ресурсов. Энергия, которая содержится в природных источниках и может быть преобразована в электрическую, тепловую, механическую, химическую, названа первичной. Первичная энергия делится на традиционные виды энергии и нетрадиционные виды энергии. Первые включают в себя ядерную энергию, энергию из органического топлива (твердые, жидкие и газообразные виды топлива), гидроэнергию рек. Энергия, которая получается после преобразования первичной на специальных установках, называется вторичной. К источникам энергии можно отнести: космические лучи, энергию морских приливов и отливов, биоэнергию, атмосферное электричество, потенциальную и кинетическую энергию воды, воздуха и т.д., земной магнетизм, энергию атомного синтеза и распада и др.

Самым первым видом твердого топлива были древесина и другие растения. После перехода от древесного топлива к угольному наступила эра электричества. К твердому топливу относят: древесину, уголь, торф, горючие сланцы. Ископаемые твердые топлива являются продуктом разложения органической массы растений. Жидкие виды топлива получают путем переработки нефти. Сырую нефть нагревают до 300 ... 370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре:

– сжиженный газ

– бензин

– керосин

– дизельное топливо

– мазут

Газообразными видами топлива являются природный газ, до­бываемый как непосредственно, так и попутно с добычей нефти, называе­мый попутным. Основным компонентом природного газа является метан СН4 и в небольшом количестве азот N2, высшие углеводороды, дву­окись углерода СО2. Попутный газ содержит меньше метана, чем природ­ный, но больше высших углеводородов, и поэтому выделяет при сгорании больше теплоты. В промышленности и, особенно в быту, находит широкое распростране­ние сжиженный газ, получаемый при первичной переработке нефти. На ме­таллургических заводах в качестве попутных продуктов получают коксовый и доменный газы. Они используются здесь же на заводах для отопления пе­чей и технологических аппаратов. В районах расположения угольных шахт своеобразным «топливом» может служить метан, выделяющийся из пла­стов при их вентиляции. Газы, получаемые путем газификации (генератор­ные) или путем сухой перегонки (нагрев без доступа воздуха) твердых топлив, в большинстве стран практически вытеснены природным газом, однако в настоящее время снова возрождается интерес к их производству и исполь­зованию. В последнее время все большее применение находит биогаз – продукт анаэробной ферментации (сбраживание) органических отходов (навоза, рас­тительных остатков, мусора, сточных вод и т. д.). Ядерным топливом является уран. Об эффективности использо­вания его показывает работа первого в мире атомного ледокола «Ленин» во­доизмещением 19 тыс. т, длиной 134 м, шириной 23,6 м, высотой 16,1 м, осадкой 10,5 м, со скоростью 18 узлов (около 30 км/ч). Он был создан для проводки караванов судов по Северному морскому пути, толщина льда по которому достигала 2 и более метров. В сутки он потреблял 260-310 грам­мов урана. Дизельному ледоколу для выполнения такого же объема работы, которую выполнял ледокол «Ленин», потребовалось бы 560 т дизтоплива. Анализ оценки обеспеченности ТЭР показывает, что наиболее дефицит­ным видом топлива является нефть. Ее хватит по разным источникам на 25-40 лет. Затем, через 35-64 года, истощатся запасы горючего газа и урана. Лучше всего обстоит дело с углем, запасы которого в мире достаточно вели­ки, и обеспеченность углем составит 218-330 лет [12].

С начала промышленной разработки нефти (1965 г.) в стране добыто 100 млн. т. В настоящее время ежегодно добывается около 1,8 млн. т нефти. РУП «Объединение «Беларуснефть» – единственное нефтедобывающее рес­публиканское унитарное предприятие – имеет 508 эксплуатационных сква­жин на 63 месторождениях нефти. Разведанные запасы нефти составляют около 80 млн. т, газоконден­сата – 0,44 млн. т, попутного газа – 9734 млн. м3. Годовая потребность Республики Беларусь в нефти составляет 16-18 млн. т, а собственные ресурсы составляют всего лишь 9-10%. Осталь­ное количество нефтепродуктов в республику поставляет около 70 субъек­тов хозяйствования.

Наиболее распространенным видом местного топлива в Беларуси являет­ся торф. Торфяные отложения имеются практически во всех регионах. По запасам торфа (первичные запасы составляли 5,65 млрд. т, оставшиеся гео­логические оцениваются в 4,3 млрд. т) Беларусь занимает второе место в СНГ, уступая только России. Разведано более 9000 месторождений торфа общей площадью в границах промышленной глубины 2,54 млн. га. В по­следнее время годовая добыча составляет 27-30 млн. т. Наиболее богатые залежи его находятся в Брестской, Витебской, Могилевской областях, в ко­торых геологический запас торфа составляет около 68% от общего запаса в стране. Месторождения бурого угля находятся, так же, как и нефть, в Припятском прогибе. Прогнозные ресурсы его на глубине 600 м оценивают­ся в 410 млн. т. В настоящее время наиболее изученными являются неогеновые угли (зале­гают на глубине 20-80 м). Разведанные запасы угля пока не разрабатываются, поскольку уголь за­легает на большой глубине, мощность его пластов небольшая. Имеющиеся запасы бурых углей в объеме 151,6 млн. т пригодны для ис­пользования после брикетирования с торфом, однако их добыча нецелесо­образна, т. к. экологический ущерб превысит полученные результаты. Нецелесообразна и добыча горючих сланцев в объеме имеющихся запа­сов 11 млрд. т, поскольку стоимость получаемых продуктов выше мировых цен на нефть. Топливом будущего считают водород, получаемый при электролизе воды. Применение этого топлива позволило бы решить три проблемы: уменьшить потребление органического и ядерного топлива, удовлетворить возрастающие потребности в энергии, снизить загрязнение окружающей среды [15].

Энергия и ее виды

Энергия – общая количественная мера движения и взаимодействия всех видов материи. Это способность к совершению работы, а работа – это энергия в действии. Если энергия – результат изменения состояния движения мате­риальных точек или тел, то она называется кинетической; к ней относят механическую энергию движения тел, тепловую энергию, обус­ловленную движением молекул. Если энергия – результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положе­ния однородных частиц, например, энергию упругого деформирован­ного тела, химическую энергию.

Более ста лет назад был установлен фундамен­тальный закон физики – закон сохранения энергии: энергия не мо­жет быть уничтожена или получена из ничего, она может лишь пе­реходить из одного вида в другой. Частным случаем закона сохранения энергии является I закон (на­чало) термодинамики. Он устанавливает взаимную превращаемость всех видов энергии: тепло Q, сообщенное неизолированной систе­ме, расходуется на увеличение ее внутренней энергии ∆U и совер­шение ею работы А против внешних сил: Q= ∆U + A [15].

Виды энергии: механическая, электрическая, тепловая, магнитная, атомная. Электрическая в основном преобразуется в другие виды – механическую, тепловую, световую. Электроэнергия – один из наиболее совершенных видов энергии. Ее преимущества: возможность выработки, удобство транспортирования, экологичность, делимостью и др. К недостаткам относят: повышенную опасность и сложность аккумулирования. Механическая энергия получается путем преобразования электрической энергии в электрических машинах или тепловых, использующих химическую энергию топлива. Тепловая энергия – используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива. Механическая энергия проявляется при движении отдельных тел, частиц. Тепловая – энергия неупорядоченного движения и взаимодействия молекул веществ. Электрическая энергия – энергия движущихся по цепи электронов. Электромагнитная – энергия электромагнитных волн, то есть движущихся электрического и магнитного полей. Ядерная энергия– энергия, которая локализуется в ядрах атомов. Единицей измерения энергии является 1 Дж. Иногда тепловую, химическую и ядерную энергию объединяют под понятием внутренней энергии.

Электрическая энергия является одним из совершенных видов энергии. Ее широкое использование обусловлено следующими факторами:

– получением в больших количествах вблизи месторождения ресурсов и водных источников;

– возможностью транспортировки на дальние расстояния с относительно небольшими потерями;

– способностью трансформации в другие виды энергии: механическую, химическую, тепловую, световую;

– отсутствием загрязнения окружающей среды;

– внедрением на основе электроэнергии принципиально новых прогрес­сивных технологических процессов с высокой степенью автоматизации.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Отходов

Под действием солнечного излучения в растениях образуются органические вещества и аккумулируется хими­ческая энергия. Этот процесс называется фотосинтезом. Животные су­ществуют за счет прямого или косвенного получения энергии и вещества от растений. Этот процесс соответствует трофическому уровню фотосин­теза. В результате фотосинтеза происходит естественное преобразование солнечной энергии. Вещества, из которых состоят растения и животные, называют биомассой [3]. Посредством химических или биохимических про­цессов биомасса может быть превращена в определенные виды топлива: газообразный метан, жидкий метанол, твердый древесный уголь. Про­дукты сгорания биотоплива путем естественных экологических или сель­скохозяйственных процессов вновь превращаются в биотопливо. Существуют различные энергетические способы переработки био­массы: термохимические (прямое сжигание, газификация, пиролиз); биохимические (спиртовая ферментация, анаэробная или аэроб­ная переработка, биофотолиз); агрохимические (экстракция топлива) [11]. Биоэнергетика – это наука, изучающая механизмы и закономерности преобразования энергии в процессах жиз­недеятельности организмов, энергетические процессы в биосфере. Наряду с этим, в последнее время сюда относят и процессы, связанные с образованием биомассы и ее ис­пользованием для получения энергии в промышленных целях. Биомасса – общая масса растений, микроорганизмов и животных, приходящаяся на единицу площади или объема их обитания. Численно она выражается в массе сырого или сухого вещества (кг/м2; кг/га; кг/м3 и т. д.). Биомассу расте­ний называют фитомассой, животных организмов – зоо­массой. Общая биомасса живых организмов биосферы Зе­мли по различным оценкам составляет от 1,8–1012 т до 2,4–1012 т сухого вещества [15].

Фотосинтез – это превращение зелеными растениями и фотосинтезирующими микроорганизмами лучистой энер­гии в энергию химических связей органических веществ. Фактически фотосинтез – биотехнологический способ преобразования энергии. Он происходит с участием хлоро­филла и других поглощающих лучистую энергию пигмен­тов. Одно из важнейших уравнений фотосинтеза:

Биомасса – наиболее перспективный и значительный возобновляе­мый источник энергии в республике, который может обеспечивать до 15% ее потребностей в топливе. Весьма многообещающе для Беларуси использование в качестве био­массы отходов животноводческих ферм и комплексов. Получение из них биогаза может составить около 890 млн. м3 в год. Сдерживающим фактором развития биогазо­вых установок в республике являются продолжительные зимы, большая металлоемкость установок, неполная обеззараженность органических удобрений. Биоэнергоустановку рассматривают в первую очередь как установку для производства орга­нических удобрений и попутно – для получения биотоплива, позволяю­щего получить тепловую и электрическую энергию. Биогаз получают путем микробиологического анаэробного разложе­ния органических веществ растительного и животного происхождения. Он состоит из 50-80% метана и 50-20 % углекислого газа. Сырьем для производства биогаза является биомасса и разнообразные органические отходы. При производстве биогаза до 90% органического вещества отходов переходит в газ и воду. При определенных температурных условиях осуществляется полное обеззараживание утилизи­руемых отходов. Анаэробная деструкция органических веществ вызывает минерализацию азота, фосфора, калия, то есть дает возможность получения эффективных биоудобрений. В Беларуси биоэнергетические установки находятся в стадии разработки и испытаний, результаты которых позволят в недалеком будущем дать уточненную оценку реального выхода товарного биогаза. Энергетическая программа Республики Беларусь до 2010 г. преду­сматривает ряд крупномасштабных мероприятий в области биоэнергетики. Считается, что применение биоэнергетических установок по переработке отходов животноводства позволит существенно улучшить экологическую обстановку вблизи крупных животноводческих комплексов, где к настоя­щему времени скопились огромные количества непереработанной биомас­сы. Кроме того, можно рассчитывать на получение высококачественных ор­ганических удобрений и за счет производства биогаза обеспечить экономию 116 тыс. т топлива в год. В мировой практике получение энергии из твердых бытовых отходов осуществляется в основном сжиганием и газификацией [14].

Основными типами энергетических процессов, связанных с переработкой биомассы, являются: прямое сжигание для получения теплоты, пиролиз, гидрогенизация.

В жилых и общественных зданиях (школах, вузах, детсадах, магазинах, столовых и т.д.) образуются твер­дые бытовые отходы (ТБО). Содержание органического вещества в них составляет 40-75%, углеводов – 35-40%, зольность – 40-70%. Ко­личество горючих компонентов в ТБО равно 50-88%. Бытовые отходы содержат также трудно разлагаемые химические элементы, в их числе хлорорганические и токсичные. В большой степени ТБО обогащены кадмием, оло­вом, свинцом и медью. В мировой практике получение энергии из ТБО осуществляется сжи­ганием или газификацией. В Японии, Дании, Швейцарии сжигается око­ло 70% твердых бытовых отходов, остальная часть складируется на по­лигонах или компостируется. В США сжигается около 14% ТБО, в Германии – 30%, Италии – 25%. В Республике Беларусь общий энергети­ческий потенциал ТБО оценивается в 20-23 млн. т, из них только 8-10% перерабатывается и используется в производстве. Ежегодно накап­ливается 2,4 млн. тонн ТБО с потенциальной энергией 470 тыс. т. Учитывая бедность республики энергетическими ресурсами, необходи­мо вовлечь ТБО в ее энергопотенциал путем применения прогрессивных технологий, заимствованных из опыта других стран, либо развернуть ис­следования и создать собственные технологии переработки ТБО.

Потенциальная энергия, заклю­ченная в коммунальных отходах, образующихся на терри­тории Беларуси, равноценна 470 тыс. т. При их биопере­работке в целях получения газа эффективность составит не более 20-25%. Кроме того, необходимо учитывать многолетние запасы таких от­ходов, которые имеются во всех крупных городах и созда­ют проблемы их складирования. Только по областным го­родам ежегодная переработка коммунальных отходов в газ позволила бы получить биогаза около 50 тыс. т, а по г. Минску – до 30 тыс. т. Эффективность данного на­правления следует оценивать не только по выходу биогаза, но и по экологической составляющей, которая при такой проблеме будет основной. Существующие в республике по­лигоны проектировались и были построены без учета ис­пользования биогаза, и недостаточная изученность ситуа­ции не позволяет рассчитывать на освоение этого вида энер­гии на ближайшие 10-15 лет [13].

В качестве сырья для получения жидкого и газообразного топлива можно применять периодически во­зобновляемый источник энергии – фитомассу быстрора­стущих растений и деревьев. В климатических условиях рес­публики с 1 га энергетических плантаций возможен сбор масс растений в количестве до 10 т сухого вещества. При дополнительных агроприемах продуктивность гектара может быть повышена в 2–3 раза. Наиболее целесообразно использовать для полу­чения сырья площади выработанных торфяных месторож­дений, на которых отсутствуют условия для произрастания сельскохозяйственных культур. Площадь таких месторож­дений в республике составляет около 180 тыс. га и может стать стабильным, экологически чистым источником энергетического сырья. Отсутствие опыта массового исполь­зования фитомассы для энергетических целей не позволяет сделать оценку затрат и будущих цен на топливо, т.к. для этой цели потребуется разработка специальной техники, дорож­ная инфраструктура, перерабатывающие предприятия и дру­гие мероприятия. По экспертным оценкам к 2010 г. за счет названного источника может быть получено 50–70 тыс. т. В настоящее время начата реализация программы по освоению технологии выращивания быстрорастущих по­род растений в организациях концерна «Белтопгаз».

Использование отходов расте­ниеводства в качестве топлива является принципиально но­вым направлением энергосбережения. Практический опыт их применения в качестве энергоносителя накоплен в Бель­гии и Скандинавских странах, а в нашей республике опыт массового применения отсутствует. Общий потенциал от­ходов растениеводства оценивается до 1,46 млн. т. в год. Решения о целесообразных объемах их сжигания для топливных целей следует принимать, сопоставляя конкретные нужды хозяйств в индивидуальном порядке. К концу прогнозируемого периода объем использования отходов растениеводства оценивается на уровне 20-30 тыс. т. Беларусь име­ет значительный потенциал для внедрения технологий про­изводства топливного этанола и биодизельного топлива из рапса и сои. Производство биодизельного топлива из рапса и сои в перспективе будет рассматриваться с точки зрения его кон­курентоспособности по отношению к традиционным ви­дам топлива, т.к. на сегодня его себестоимость больше, чем традиционного себестоимость дизельного топлива, а его ис­пользование в развитых странах обусловливается значитель­но низким негативным влиянием на окружающую среду. Для внедрения технологий производства топливного этанола требуется главным образом соответствующая ре­конструкция спиртовых заводов, что обеспечит минималь­ный объем необходимых инвестиций. Общий потенциал оценивается до 1 млн. т. Топлива в год, а при активном инвестировании и внедрении данного на­правления к 2010 г. объем замещения традиционных видов топлива может составить около 20 тыс. т . в год [3].

Бытовое энергосбережение

Литература

1. Барышев В., Трутаев В. Источник энергии – в ее эконо­мии // Белор. думка. 1997. № 2.

2. Башмаков И.А., Бесчинский А.А. Современные проблемы экономии ТЭР. Т 1. М.: ВИНИТИ, 1989.

3. Березовский, Н.И. Технология энергосбережения : учеб. пособие / Н.И. Березовский, СН. Березовский, Е.К. Костюкевич. – Мн.: БИП-С Плюс, 2007.

4. Журнал «Энергоэффективность». – Мн., 1998-2004.

5. Кирилин В.А. Энергетика. Главные проблемы. М.: Знание, 1990.

6. Коваленко Э.П. Возобновляемые источники энергии и возможности их использо­вания в Беларуси. – Мн., 1995.

7. Кравченя, Э.М. Охрана труда и основы энергосбережения: учеб. пособие / Э.М. Кравченя, Р.Н. Козел, И.П. Свирид. – 2-е изд. – Мн.: ТетраСистемс, 2005.

8. Кундас, С.П. Энергоустойчивое развитие местных сообществ: учебно-методич. пособие / С.П. Кундас, С.С. Позняк, Б.В. Ермоленков. – Мн:, 2007.

9. Куперман Л.И. Вторичные ресурсы. Киев: Высшая школа, 1986.

10. Марочкин, В.К. Малая энергетика сельскохозяйственных предприятий: справ, пособие / В. К. Марочкин, Н.Д. Байлук, М.Ю. Брилевский. – Мн.: Ураджай, 1990.

11. Мы выбираем будущее с альтернативной энергетикой: Учебно-методич. пособие / С.С. Позняк, О.И. Родькин, О.А. Кучинский. – Мн:, 2009.

12. Основы энергосбережения: Учебное пособие / Б.И. Врублевский, С.Н.Лебедева. Гомель: Развитие, 2002.

13. Основы энергосбережения: Учебное пособие / М.В. Самойлов, В.В. Паневчик, А.Н. Ковалев. Мн.: БГЭУ, 2002.

14. Основы энергосбережения: Курс лекций / Под. ред. Н. Г. Хутской. – Мн.: Технология, 1999.

15. Поспелова, Т.Г. Основы энергосбережения / Т.Г. Поспелова. – Мн.: Технопринт, 1994.

16. Потребление электрической энергии – надежность и режимы / В.В. Михайлов, М.А. Поляков. – М.: Высш. шк., 1989.

17. Севернее, М.М. Энергосберегающие технологии в сельскохозяйственном производстве / М.М. Севернев. – Мн.: Ураджай, 1994.

18. Свидерская, О.В. Основы энергосбережения: ответы на экзаменац. вопр. / О.Б. Свидерская. – Мн.: ТетраСистемс, 2008.

19. Твайдел Дж., Уэйр А. Возобновляемые источники энергии. М., 1987.

20. Харитонов В.В. и др. Вторичные энергетические ресурсы и охрана окружающей среды. – Мн., 1988.

21. Черноусов, С.В. Энергетика Беларуси смотрит в будущее / C.В. Черноусов // Энергоэффективность. – 2006. – № 1.

22. Черноусов, С.В. Энергетика Беларуси смотрит в будущее / С.В. Черноусов // Энергоэффективность. – 2006. – № 2.

23. Шенец, Л.В. Результаты работы по эффективному использова­нию ТЭР в республике в 2001-2005 гг. / Л.В. Шенец // Энергоэф­фективность. – 2006. – № 2.

24. Экологические проблемы энергетики. Новосибирск: Наука, 1989.

Роль энергетики в развитии человеческого общества

Окружающий нас мир обладает поистине неиссякаемым источником различных видов энергии: некоторые из них чело­вечество научилось использовать уже с давних времен (энер­гия движения воды в реках, энергия ветра, энергия, заклю­ченная в топливе), некоторые еще в полной мере не использу­ются: энергия Солнца, энергия взаимодействия Земли и Лу­ны, энергия термоядерного синтеза, энергия тепла Земли [12].

Основным энергетическим источни­ком жизни на Земле является Солнце (рис. 1.).

Рис. 1. Распределение на Земле поступающей от Солнца энергии

Под действием солнечных лучей хлорофилл растений раз­лагает углекислоту, поглощаемую из воздуха, на кислород и углерод. Последний накапливается в растениях. Уголь, газ, торф и т.д. – это запасы лучистой энергии Солнца. Энергия во­ды, ветра – также, в конечном счете, результаты солнечной активности: ветры возникают при неодинаковом нагревании Земли Солнцем, а вода, отдающая потенциальную энергию при падении, получает ее при испарении озер и океанов под действием солнечного света и ветра. Растительная и животная жизнь образует цикл, который начинается с солнечного света, воды и углекислого газа и за­канчивается водой, углекислым газом, теплом и механичес­кой энергией животных и человека. Все машины, работающие на нефтепродуктах, угле, ветре, движущейся воде, все животные и человек, потребляющие пищу, в конечном счете, полу­чают свое «топливо» от Солнца. К сожалению, большинство энергии, потребляемой челове­ком, превращается в бесполезное тепло из-за низкой эффектив­ности использования имеющихся энергетических ресурсов [18].

Величину энергии можно представить количеством угля в мегатоннах (Мт), который при сгорании дал бы ту же энергию. Около 40 Мт при сгорании топлива превращается в полезный труд, на бытовые нужды расходуется около 800 Мт, на общест­венное производство – 1000 Мт. Таким образом, из годового потребления, составляющего 7500 Мт, полезно используется 2200 Мт, остальное растрачива­ется в виде теплоты. Но даже эффективностью 2200/7500 Мт че­ловечество не может похвастаться, так как не учтено падающее на Землю солнечное излучение, составляющее 10 000 000 Мт в год. Энергия сыграла решающую роль в развитии цивилизации. Потребление энергии и накопление информации имеет пример­но одинаковый характер изменения во времени, тесна связь между расходом энергии и объемом выпускаемой продукции. Рост потребления энергии поразительно высок. Но именно благодаря ему человек значительную часть своей жизни может посвятить досугу, образованию, созидательной деятельности, добился теперешней высокой продолжительности жизни.

Снабжение общества энергией необходимо для: обогре­ва помещений, обеспечения передвижения, выпуска необходимых товаров, поддержания работоспособности различ­ных машин, механизмов, приборов, приготовления пищи, ос­вещения, поддержания жизнедеятельности и т.д. Эти примеры применения энергии можно разделить на три большие группы:

а) энергия питания. Она дороже других видов энергии: пшеница в перерасчете на Джоули гораздо дороже, чем уголь. Питание дает тепло для поддержания температуры тела, энер­гию для его движения, для осуществления умственного и фи­зического труда;

б) энергия в виде тепла для обогрева домов и приготовле­ния пищи. Она дает возможность жить в различных климатических условиях и разнообразить пищевой рацион человека;

в) энергия для обеспечения функционирования обществен­ного производства. Это энергия для производства товаров и услуг, физического перемещения людей и грузов в простран­стве, для поддержания работоспособности всех систем комму­никаций. Затраты этой энергии на душу населения значитель­но выше, чем затраты энергии на питание [13].

На страны третьего мира, где живет 3/4 населения Земли, приходится около 1/5 мирового потребления энергии. В последние 25 лет все развитые страны мира перестали наращивать потребление первичной энергии на душу населения, обеспечив высокий уровень жизни своих граждан.

Электроэнергетика является важнейшей отраслью экономики любой страны, так как ее продукция (электрическая энергия) относится к универсальному виду энергии. Ее можно передавать на значительные расстояния, делить на большое количество потребителей. Без электрической энергии невозможно осуществить многие технологические процессы, как невозможно представить нашу жизнь без отопления, освещения, транспорта, использования современных средств связи, то есть без тех предметов, которые потребляют электроэнергию. Одной из специфических особенностей электроэнергетики является то, что ее продукция в отличие от других отраслей промышленности не может накапливаться в запас на складе для последующего потребления. В каждый момент времени ее производство должно соответствовать ее потреблению. На долю электроэнергетики в Республике Беларусь приходиться примерно 15,8% валовой продукции промышленности страны. Хотя электрическая энергия широко используется в разных отраслях народного хозяйства, основное ее количество (60%) в республике потребляется в промышленности. Особенностью электроэнергетики в Беларуси является то, что практически 100% всей производимой электроэнергии дают тепловые электростанции, которые работают на привозном топливе (мазут, природный газ). Более 50% электроэнергии вырабатывается в Минской и Гомельской областях. Часть электроэнергии вырабатывается на ТЭЦ, которые размещены в крупных городах, а также на ТЭЦ при некоторых предприятиях Беларуси (например, «Беларускалий»). Первая в Беларуси электростанция была построена на территории Гомельской области в области в 1898 году при Добрушской бумажной фабрике, затем через пять лет была пущена в эксплуатацию Минская электростанция, потом Витебская и другие. Всего в 1913 году на территории республики действовало 11 электростанций. Поскольку при передаче электроэнергии наблюдаются ее потери, поэтому наибольшее количество импортируемой в Беларусь электроэнергии приходится на долю России, Литвы, Украины, Польши и др.

Существует тесная связь между энергообеспечением, богатством государства и благосостоянием народа. Уровень развития общества определяется способом его энергообеспечения. В настоящее время в результате НТП почти всю работу выполняют машины, а на мускульную силу людей приходится меньше 1% энергии. Последовательно сменяются виды топлива: дрова – уголь – нефть – газ – ядерное топливо и т.д, которые ухудшают экологическую среду [3].

Наши рекомендации