Текущая аттестация качества усвоения знаний
Оценка качества усвоения знаний по дисциплине проводится в течение каждого семестра в устной или письменной форме в виде:
- тестовых заданий;
- контрольных работ;
- творческих заданий;
- сравнительного анализа концепций, предложенных в разных учебных пособиях;
- коллоквиумов по основным темам; и др.
Система текущей аттестации создает условия для построения студентом оптимальных путей подготовки к итоговой аттестации, так как дисциплинирует работу студента в течение семестра, конкретизирует требования к уровню подготовки, позволяет студенту представить уровень собственных знаний и умений по предмету, увидеть свои слабые стороны и учесть их при подготовке к экзамену, дает преподавателю основания для объективной оценки знаний каждого студента и общей картины усвоения группой пройденного материала.
Перечень примерных вопросов к экзамену по дисциплине «Теоретические основы и технологии начального математического образования» (3 семестр)
1. Содержание и система построения начального курса математики. Методы и методические приемы обучения математике.
2. Формы, средства обучения математике. Контроль и учет знаний, умений и навыков по математике.
3. Аксиоматический метод в математике. Аксиомы Пеано.
4. Аксиоматический подход к определению операции сложения во множестве N чисел, её свойства.
5. Аксиоматический подход к определению операции умножения во множестве N чисел, её свойства.
6. Аксиоматический подход к определению операции вычитания во множестве N чисел, её свойства.
7. Аксиоматический подход к определению операции деления во множестве N чисел, её свойства. Операция деления с остатком.
8. Теоретико-множественный подход к определению операции сложения во множестве N чисел, её свойства.
9. Теоретико-множественный подход к определению операции вычитания во множестве N чисел, её свойства.
10. Теоретико-множественный подход к определению операции умножения во множестве N чисел, её свойства.
11. Теоретико-множественный подход к определению операции деления во множестве N чисел, её свойства.
12. Натуральное число как значение длины отрезка. Смысл операций над целыми неотрицательными числами, рассматриваемые как длины отрезков.
13. Система счисления. Десятичная система счисления.
14. Запись целых неотрицательных чисел в различных позиционных системах счисления.
15. Методика изучения нумерации чисел в концентре десяток.
16. Методика изучения нумерации чисел в концентре сотня.
17. Методика работы над приемами сложения и вычитания в концентре десяток.
18. Методика работы над приемами сложения и вычитания в концентре сотня.
19. Методика изучения табличных и особых случаев умножения и деления.
20. Методика изучения внетабличных случаев умножения и деления.
21. Методика изучения темы «деление с остатком».
Перечень примерных вопросов к зачету по дисциплине «Теоретические основы и технологии начального математического образования» (4 семестр)
1. Методика работы над письменными приемами умножения в концентре «многозначные числа».
2. Методика работы над письменными приемами деления в концентре «многозначные числа».
3. Неотрицательные рациональные числа.
4. Аксиоматическая теория неотрицательного рационального числа.
5. Свойства множества неотрицательных рациональных чисел: упорядоченность, счетность, плотность в себе, бесконечность.
6. Конечная десятичная дробь. Бесконечная десятичная периодическая дробь.
7. Понятие действительного неотрицательного числа. Равенство и неравенство действительных чисел. Их свойства.
8. Действия над действительными числами.
9. Приближенные вычисления. Основные понятия теории приближенных чисел и способы вычислений результатов арифметических действий над ними.
10. Свойства множества действительных чисел: упорядоченность, непрерывность, бесконечность, несчетность.
11. Методика изучения тем «Доли» и «Дроби».
12. Математическое моделирование.
13. Методика ознакомления учащихся с текстовой арифметической задачей, ее структурой. Общий план работы над задачами.
14. Методика работы над задачами, раскрывающими конкретный смысл действий сложения и вычитания и взаимосвязь между этими действиями.
15. Методика работы над задачами, раскрывающими смысл отношений «… увеличить на несколько единиц» и «… уменьшить на несколько единиц».
16. Методика работы над задачами, раскрывающими конкретный смысл действий умножения и деления.
17. Методика работы над задачами, раскрывающими конкретный смысл отношений «… увеличить в несколько раз» и «… уменьшить в несколько раз».
18. Методика работы над задачами на разностное и кратное сравнение.
Перечень примерных вопросов к экзамену по дисциплине «Теоретические основы и технологии начального математического образования» (6 семестр)
1. Содержание и система построения начального курса математики. Методы и методические приемы обучения математике.
2. Формы, средства обучения математике. Контроль и учет знаний, умений и навыков по математике.
3. Методика изучения нумерации чисел в концентре десяток.
4. Методика изучения нумерации чисел в концентре сотня.
5. Методика изучения нумерации чисел в концентре тысяча.
6. Методика изучения нумерации чисел в концентре «многозначные числа».
7. Методика работы над приемами сложения и вычитания в концентре десяток.
8. Методика работы над приемами сложения и вычитания в концентре сотня.
9. Методика изучения табличных, внетабличных и особых случаев умножения и деления.
10. Методика работы над письменными приемами умножения в концентре «многозначные числа».
11. Методика работы над письменными приемами деления в концентре «многозначные числа».
12. Методика ознакомления учащихся с текстовой арифметической задачей, ее структурой. Общий план работы над задачами.
13. Методика работы над задачами, раскрывающими конкретный смысл действий сложения и вычитания и взаимосвязь между этими действиями.
14. Методика работы над задачами, раскрывающими смысл отношений «… увеличить на несколько единиц» и «… уменьшить на несколько единиц».
15. Методика работы над задачами, раскрывающими конкретный смысл действий умножения и деления.
16. Методика работы над задачами, раскрывающими конкретный смысл отношений «… увеличить в несколько раз» и «… уменьшить в несколько раз».
17. Методика работы над задачами на разностное и кратное сравнение.
18. Методика работы над составными задачами с пропорциональными величинами.
19. Методика работы над составными задачами, связанными с движением.
20. Методика работы над числовыми выражениями, равенствами и неравенствами.
21. Методика работы над уравнениями.
22. Геометрические понятия в начальной школе.
23. Решение задач на распознавание и подсчет фигур, деление фигур на части и составление фигур из заданных частей.
24. Решение задач на вычисление периметра и площади геометрических фигур.
25. Методика изучения величин: масса.
26. Методика изучения величин: емкость.
27. Методика изучения величин: площадь.
28. Методика изучения величин: время.
29. Методика изучения величин: длина.
30. Методика изучения величин: скорость.
31. Действия с величинами.