Элементы, подверженные действию осевой силы с изгибом
4.16. Расчет внецентренно-растянутых и растянуто-изгибаемых элементов следует производить по формуле
, (27)
где Wрас – расчетный момент сопротивления поперечного сечения (см. п. 4.9);
Fрас – площадь расчетного сечения нетто.
4.17. Расчет на прочность внецентренно-сжатых и сжато-изгибаемых элементов следует производить по формуле
, (28)
где Мд – изгибающий момент от действия поперечных и продольных нагрузок, определяемый из расчета по деформированной схеме.
Примечания: 1. Для шарнирно-опертых элементов при симметричных эпюрах изгибающих моментов синусоидального, параболического, полигонального и близких к ним очертаний, а также для консольных элементов Мд следует определять по формуле
, (29)
где x – коэффициент, изменяющийся от 1 до 0, учитывающий дополнительный момент от продольной силы вследствие прогиба элемента, определяемый по формуле
, (30)
М – изгибающий момент в расчетном сечении без учета дополнительного момента от продольной силы;
j – коэффициент, определяемый по формуле (8) п. 4.3.
2. В случаях когда в шарнирно-опертых элементах эпюры изгибающих моментов имеют треугольное или прямоугольное очертание, коэффициент – по формуле (30) следует умножать на поправочный коэффициент kн:
kн = aн + x(1 – aн), (31)
где aн – коэффициент, который следует принимать равным 1,22 при эпюрах изгибающих моментов треугольного очертания (от сосредоточенной силы) и 0,81 при эпюрах прямоугольного очертания (от постоянного изгибающего момента).
3. При несимметричном загружении шарнирно-опертых элементов величину изгибающего момента Мм следует определять по формуле
, (32)
где Мс и Мк – изгибающие моменты в расчетном сечении элемента от симметричной и кососимметричной составляющих нагрузки;
xс и xк – коэффициенты, определяемые по формуле (30) при величинах гибкостей, соответствующих симметричной и кососимметричной формам продольного изгиба.
4. Для элементов переменного по высоте сечения площадь Fбр в формуле (30) следует принимать для максимального по высоте сечения, а коэффициент j следует умножать на коэффициент kжN, принимаемый по табл. 1 прил. 4.
5. При отношении напряжений от изгиба к напряжениям от сжатия менее 0,1 сжато-изгибаемые элементы следует проверять также на устойчивость по формуле (6) без учета изгибающего момента.
4.18. Расчет на устойчивость плоской формы деформирования сжато-изгибаемых элементов следует производить по формуле
, (33)
где Fбр – площадь брутто с максимальными размерами сечения элемента на участке lp;
Wбр – см. п. 4.14;
n = 2 – для элементов без закрепления растянутой зоны из плоскости деформирования и n = 1 для элементов, имеющих такие закрепления;
j – коэффициент продольного изгиба, определяемый по формуле (8) для гибкости участка элемента расчетной длиной lp из плоскости деформирования;
jм – коэффициент, определяемый по формуле (23).
При наличии в элементе на участке lp закреплений из плоскости деформирования со стороны растянутой от момента М кромки коэффициент jм следует умножать на коэффициент kпМ, определяемый по формуле (24), а коэффициент j – на коэффициент kпN по формуле
, (34)
где ap, lp, h и m – см. п. 4.14.
При расчете элементов переменного по высоте сечения, не имеющих закреплений из плоскости по растянутой от момента М кромке, или при m < 4 коэффициенты j и jМ, определяемые по формулам (8) и (23), следует дополнительно умножать соответственно на коэффициенты kжN и kжМ, приведенные в табл. 1 и 2 прил. 4.
При m ³ 4 kжN = kжМ = 1.
4.19. В составных сжато-изгибаемых элементах следует проверять устойчивость наиболее напряженной ветви, если расчетная длина ее превышает семь толщин ветви, по формуле
, (35)
где j1 – коэффициент продольного изгиба для отдельной ветви, вычисленный по ее расчетной длине l1 (см. п. 4.6);
Fбр, Wбр – площадь и момент сопротивления брутто поперечного сечения элемента.
Устойчивость сжато-изгибаемого составного элемента из плоскости изгиба следует проверять по формуле (6) без учета изгибающего момента.
4.20. Количество срезов связей nс, равномерно расставленных в каждом шве сжато-изгибаемого составного элемента на участке с однозначной эпюрой поперечных сил при приложении сжимающей силы по всему сечению, должно удовлетворять условию
, (36)
где Sбр – статический момент брутто сдвигаемой части поперечного сечения относительно нейтральной оси;
Iбр – момент инерции брутто поперечного сечения элемента;
Т – расчетная несущая способность одной связи в данном шве;
Мд – изгибающий момент, определяемый по п. 4.17.