Гидросферные опасности

НАВОДНЕНИЯ

Половодьем называют ежегодно повторяющееся в один и тот же сезон относительно длительное увеличение водоносности рек, сопровождающееся повышением уровня воды.

Паводок – сравнительно кратковременное и непериодическое поднятие уровня воды.

Следующие один за другим паводки могут образовать половодье, а последнее – наводнение.

Значительное затопление водой местности в результате подъема уровня воды в реке, озере или море, вызываемого различными причинами, называетсянаводнением.

Наводнение – наиболее распространенная природная опасность. Наводнение на реке происходит от резкого возрастания количества воды вследствие таяния снега или ледников, расположенных в ее бассейне, а также в результате выпадения обильных осадков. Наводнения нередко вызываются загромождением русла льдом при ледоходе (затор) или закупориванием русла внутренним льдом под неподвижным ледяным покровом и образованием ледяной пробки (зажор). Наводнения нередко возникают под действием ветров, нагоняющих воду с моря и вызывающих повышение уровня за счет задержки в устье приносимой рекой воды. Эти наводнения называют наганными.

Наводнения такого типа наблюдались в дельте Невы (1824, 1924 гг.), в Голландии, в Англии, в Гамбурге и других регионах земного шара.

На морских побережьях и островах наводнения могут возникнуть в результате затопления волной, образующейся при землетрясениях, извержениях вулканов, цунами.

Наводнения угрожают почти 3/4 земной суши. По данным ЮНЕСКО, от речных наводнений погибло в 1947-67 гг. около 200 000 человек. Специалисты считают, что людям грозит опасность, когда слой воды достигает 1 м, а скорость потока превышает 1 м/с. Подъем воды на 3 м уже приводит к разрушению домов. Наводнения приносят и большой материальный ущерб. Наводнения постоянно сопровождают человечество.

Сильнейшее наводнение, которое произошло примерно 5 600 лет назад в долине Тигра и Евфрата в Месопотамии, имело столь серьезные последствия, что нашло отражение в Библии как всемирный потоп. Значительная часть Голландии находится ниже уровня моря. Поэтому здесь издавна начали сооружать дамбы. В 1953 г. произошло сильное наводнение, при котором уровень воды достиг 4,6 м. Защитные сооружения не выдержали. Погибло более 18 000 человек. В 1957 г. начато строительство новых защитных сооружений. Гамбург, отстоящий в 100 км от устья Эльбы, периодически затопляется в результате штормовых нагонов в Северном море. В 1981 г. подъем воды составил 5,8 м. Катастрофические подъемы воды в Темзе происходили многократно за время существования Лондона и сопровождались человеческими жертвами. Острова дельты Невы, на которых был основан Санкт-Петербург, с 1703 г. более 260 раз заливались водой. Сильное наводнение случилось 7 ноября 1824 г. Вода поднялась на 4,21 м выше уровня Балтийского моря. Об этом наводнении А. С. Пушкин в «Медном всаднике» написал:

Но силой ветров отзалива

ПерегражденнаяНева

Обратно шла, гневна,бурлива,

И затопляла острова...

Это было одно из самых страшных стихийных бедствий. Было разрушено более 3 тыс. домов и строений, погибло около 600 человек. Дворцовая площадь. Невский проспект до Аничкова моста были затоплены водой. Наводнение возникает из-за того, что Нева не может пробиться к морю и течет вспять.

Но ветер не единственная причина наводнения. Иногда и при полном безветрии бывали наводнения. Причиной их были длинные волны, возникающие в море под влиянием циклона. Длинная волна со скоростью 50-60 км/ч движется в Финский залив, становясь на мелководье и в сужающемся заливе более высокой, и препятствует речному стоку. При одновременном действии всех возможных факторов подъем уровня воды в дельте Невы может достичь 550 см. Гибель людей во время наводнений, огромный материальный ущерб, приносимый им, заставляют людей изучать эти явления и изыскивать способы защиты от них.

Наводнения на реках по высоте подъема воды, площади затопления и величине ущерба делят на 4 категории: низкие (малые), высокие (средние), выдающиеся (большие) и катастрофические. Существует классификация наводнений по признаку причин (таблица 18).

Таблица 18

Классификация наводнений

Наименование наводнений Основные причины возникновения наводнений Возможная высота подъема воды, м Средняя продолжительность Регионы СНГ, наиболее подверженные наводнениям
Половодья Весеннее таяние льда и снега в горах 2-3 на малых реках, 15-20 и более на крупных реках До 15-20 суток на малых реках, 2-3 месяца на крупных реках На большинстве рек стран, расположенных на территории бывшего СССР
Паводковые Дожди, зимние оттепели с мокрым снегом   Несколько метров   15-20 суток на малых реках, несколько дней на горных реках   Реки Крыма, Средней Азии, Ленкорани, Кура-Араксинской низменности
Ливневые Интенсивные кратковременные ливни   До 20-30 Несколько дней Реки Украины, Нижнего Дона, Кавказа, Дальнего Востока
Запорные Зажоры – осенне-зимнее скопление шуги. Заторы – скопление льда при ледоходе 3-4, редко до 6-8 До 4-5 дней Реки Северо-Запада, Карелии, Сибири, Средней Азии
Селевые Смывание с горных склонов рыхлого и мелкообмолоченного грунта   От 2-4 до 80-100 До нескольких часов Горные реки Кавказа, Казахстана, Карпат, Северного Урала, Забайкалья
Нагонные Нагоны воды в устья рек при приливах и сильных ветрах   От 2-3 до 10-12 До 18-20 дней Реки бассейнов юга Сахалина, Каспийского, Азовского, Балтийского морей
Завальные Перекрытие русла ледниками, обвалами, оползнями склонов   От нескольких десятков до сотен метров   Несколько часов при прорыве завала Реки Памира, Кавказа, Камчатки, Тянь-Шаня
Аварии на гидротехнических сооружениях   Ошибки инженерных расчетов, гидрологических прогнозов и эксплуатации сооружений     Десятки и сотни метров До нескольких дней На всей территории бывшего СССР

гидросферные опасности - student2.ru

Рис. 18

Схема оповещения и план мероприятий в Шрусбери

Частота наводнений различна в различных регионах. Низкие наводнения повторяются через 5-10 лет, высокие – через 20-25 лет, выдающиеся – через 50-100 лет, катастрофические не чаще одного раза в 100-200 лет. Продолжительность наводнений от нескольких дней до 80-90 дней.

Защита людей в условиях наводнений включает оповещение, эвакуацию людей и другие мероприятия в соответствии с планами борьбы с наводнениями и защиты населения. На рис. 18 показана образцовая организация работы во время наводнения в Шрусбери (Великобритания), который находится на реке Северн примерно в 250 км от Лондона.

гидросферные опасности - student2.ru

Наиболее эффективный способ борьбы с речными наводнениями – регулирование речного стока путем создания водохранилищ.

Для защиты от наводнений в Голландии, Германии, Англии и других странах строят специальные защитные сооружения. Для защиты от водной стихии в дельте Невы строится защитный комплекс длиной более 25 км в створе поселок Горская – Кронштадт – Ломоносов. В конструкции комплекса предусмотрены судопропускные и водопропускные сооружения, каменно-земляные дамбы, возвышающиеся над гладью залива на 8 м.

При угрозе наводнения мощное сооружение из стали и бетона по команде диспетчера с центрального поста управления в Кронштадте наглухо закроет акваторию, преградив путь длинной волне к городу. Строительство комплекса должно закончиться в 2001 г. На рис.19 показан план защитных сооружений и Невской губы.

ЦУНАМИ

Цунами – это гравитационные волны очень большой длины, возникающие в результате сдвига вверх или вниз протяженных участков дна при сильных подводных землетрясениях, реже вулканических извержениях.

В силу малой сжимаемости воды и быстроты процесса деформации участков дна опирающийся на них столб воды также смещается, не успевая растечься, в результате чего на поверхности воды образуется некоторое возвышение или понижение. Образовавшееся возмущение переходит в колебательное движение толщи воды, распространяющееся со скоростью, пропорциональной квадратному корню из глубины моря (50-1000 км/ч). Расстояние между соседними гребнями волн находится в пределах 5...1500 км. Высота волн в области их возникновения находится в пределах 0,1–5 м, у побережья – до 10 м, а в клинообразных бухтах, долинах рек – свыше 50 м. В глубь суши цунами могут распространяться до 3 км. Это и есть волны-цунами (япон.).

Известно более1000 случаев цунами, из них около 100 с катастрофическими последствиями.

Основной район, где проявляются цунами, – побережье Тихого океана (80% случаев), а также Атлантический океан и реже Средиземное море. Цунами очень быстро достигают берега. Обладая большой энергией, достигающей иногда 1020 эрг, цунами производят большие разрушения и представляют угрозу для людей.

Надежной защиты от цунами нет. Мероприятиями по частичной защите является сооружение волнорезов, молов, насыпей, посадка лесных полос, устройство гаваней. Цунами не опасно для судов в открытом море.

Важное значение для защиты населения от цунами имеют службы предупреждения о приближении волн, основанные на опережающей регистрации землетрясений береговыми сейсмографами.

АТМОСФЕРНЫЕ ОПАСНОСТИ

Газовая среда вокруг Земли, вращающаяся вместе с нею, называетсяатмосферой.

Состав ее у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента углекислый газ, водород, гелий, неон и др. газы. В нижних 20 км содержится водяной пар (3% в тропиках, 2 ´ 10-5% в Антарктиде). На высоте 20-25 км расположен слой озона, который предохраняет живые организмы на Земле от вредного коротковолнового излучения. Выше 100 км молекулы газов разлагаются на атомы и ионы, образуя ионосферу.

гидросферные опасности - student2.ru

Рис. 20

Структура тропического циклона

В зависимости от распределения температуры атмосферу подразделяют на тропосферу, стратосферу, мезосферу, термосферу, экзосферу.

Неравномерность нагревания способствует общей циркуляции атмосферы, которая влияет на погоду и климат Земли. Сила ветра у земной поверхности оценивается по шкале Бофорта.

Атмосферное давление распределяется неравномерно, что приводит к движению воздуха относительно Земли от высокого давления к низкому. Это движение называется ветром. Область пониженного давления в атмосфере с минимумом в центре называетсяциклоном.

Циклон в поперечнике достигает нескольких тысяч километров. В Северном полушарии ветры в циклоне дуют против часовой стрелки, а в Южном – по часовой. Погода при циклоне преобладает пасмурная, с сильными ветрами (рис. 20).

Антициклон – это область повышенного давления в атмосфере с максимумом в центре. Поперечник антициклона составляет несколько тысяч километров. Антициклон характеризуется системой ветров, дующих по часовой стрелке в Северном полушарии и против – в Южном, малооблачной и сухой погодой и слабыми ветрами.

В атмосфере имеют место следующие электрические явления: ионизация воздуха, электрическое поле атмосферы, электрические заряды облаков, токи и разряды.

В результате естественных процессов, происходящих в атмосфере, на Земле наблюдаются явления, которые представляют непосредственную опасность или затрудняют функционирование систем человека. К таким атмосферным опасностям относятся туманы, гололед, молнии, ураганы, бури, смерчи, град, метели, торнадо, ливни и др.

Гололед – слой плотного льда, образующийся на поверхности земли и на предметах (проводах, конструкциях) при замерзании на них переохлажденных капель тумана или дождя.

Обычно гололед наблюдается при температурах воздуха от 0 до-3°С, но иногда и более низких. Корка намерзшего льда может достигать толщины нескольких сантиметров. Под действием веса льда могут разрушаться конструкции, обламываться сучья. Гололед повышает опасность для движения транспорта и людей.

Туман – скопление мелких водяных капель или ледяных кристаллов, или тех и других в приземном слое атмосферы (иногда до высоты в несколько сотен метров), понижающее горизонтальную видимость до 1 км и менее.

В очень плотных туманах видимость может понижаться до нескольких метров. Туманы образуются в результате конденсации или сублимации водяного пара на аэрозольных (жидких или твердых) частицах, содержащихся в воздухе (т. н. ядрах конденсации). Туман из водяных капель наблюдается главным образом при температурах воздуха выше -20°С. При температуре ниже -20°С преобладают ледяные туманы. Большинство капель тумана имеет радиус 5-15 мкм при положительной температуре воздуха и 2-5 мкм при отрицательной температуре. Количество капель в 1 см3 воздуха колеблется от 50-100 в слабых туманах и до 500-600 в плотных. Туманы по их физическому генезису подразделяются на туманы охлаждения и туманы испарения.

По синоптическим условиям образования различают туманы внутримассовые, формирующиеся в однородных воздушных массах, и туманы фронтальные, появление которых связано с фронтами атмосферными. Преобладают туманы внутримассовые.

В большинстве случаев это туманы охлаждения, причем их делят на радиационные и адвективные. Радиационные туманы образуются над сушей при понижении температуры вследствие радиационного охлаждения Земной поверхности, а от нее и воздуха. Наиболее часто они образуются в антициклонах. Адвективные туманы образуются вследствие охлаждения теплого влажного воздуха при его движении над более холодной поверхностью суши или воды. Адвентивные туманы развиваются как над сушей, так и над морем, чаще всего в теплых секторах циклонов. Адвективные туманы устойчивее, чем радиационные.

Фронтальные туманы образуются вблизи атмосферных фронтов и перемещаются вместе с ними. Туманы препятствуют нормальной работе всех видов транспорта. Прогноз туманов имеет важное значение в безопасности.

Град – вид атмосферных осадков, состоящих из сферических частиц или кусочков льда (градин) размером от 5 до 55 мм, встречаются градины размером 130 мм и массой около 1 кг. Плотность градин 0,5-0,9 г/см3. В 1 мин на 1 м2 падает 500-1000 градин. Продолжительность выпадения града обычно 5-10 мин, очень редко – до 1 ч.

Разработаны радиологические методы определения градоносности и градоопасности облаков и созданы оперативные службы борьбы с градом. Борьба с градом основана на принципе введения с помощью ракет или снарядов в облако реагента (обычно йодистого свинца или йодистого серебра), способствующего замораживанию переохлажденных капель. В результате появляется огромное количество искусственных центров кристаллизации. Поэтому градины получаются меньших размеров и они успевают растаять еще до падения на землю.

Гром – звук в атмосфере, сопровождающий разряд молнии. Вызывается колебаниями воздуха под влиянием мгновенного повышения давления на пути молнии.

Молния – это гигантский электрический искровой разряд в атмосфере, проявляющийся обычно яркой вспышкой света и сопровождающим ее громом.

Наиболее часто молнии возникают в кучево-дождевых облаках. В раскрытие природы молнии внесли вклад американский физик Б. Франклин (1706-1790), русские ученые М. В. Ломоносов (1711-1765) и Г. Рихман (1711-1753), погибший от удара молнии при исследованиях атмосферного электричества.

Молнии делятся навнутриоблачные, т. е. проходящие в самих грозовых облаках, и наземные, т. е. ударяющие в землю. Процесс развития наземной молнии состоит из нескольких стадий (рис.21).

гидросферные опасности - student2.ru

На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизируют их. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов – стримеры, представляющие собой хорошо проводящие каналы, которые, соединяясь, дают начало яркому термоионизированному каналу с высокой проводимостью – ступенчатому лидеру (рис. 21, а, б). Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ≈ 5 ´ 107 м/с, после чего его движение приостанавливается на несколько десятков мксек, а свечение сильно ослабевает. В последующей стадии лидер снова продвигается на несколько десятков метров, яркое свечение при этом охватывает все пройденные ступени. Затем снова следует остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2 ´ 105 м/сек. По мере продвижения лидера к земле напряженность поля на его конце усиливается и под его действием из выступающих на поверхности земли предметов выбрасывается ответный стример, соединяющийся с лидером. На этом явлении основано создание молниеотвода. В заключительной стадии по ионизированному лидером каналу (рис. 21, в) следует обратный, или главный разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, сильной яркостью и большой скоростью продвижения » 107...108 м/с. Температура канала при главном разряде может превышать 25 000°С, длина канала молнии 1-10 км, диаметр – несколько сантиметров. Такие молнии называются затяжными. Они наиболее часто бывают причиной пожаров. Обычно молния состоит из нескольких повторных разрядов, общая длительность которых может превышать 1 с. Внутриоблачные молнии включают в себя только лидерные стадии, их длина от 1 до 150 км. Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы. Эти обстоятельства учитываются при устройстве молниеотвода. В отличие от опасных молний, называемых линейными, существуют шаровые молнии, которые нередко образуются вслед за ударом линейной молнии. Молнии, как линейная, так и шаровая, могут быть причиной тяжелых травм и гибели людей. Удары молний могут сопровождаться разрушениями, вызванными ее термическими и электродинамическими воздействиями. Наибольшие разрушения вызывают удары молний в наземные объекты при отсутствии хороших токопроводящих путей между местом удара и землей. От электрического пробоя в материале образуются узкие каналы, в которых создается очень высокая температура, и часть материала испаряется со взрывом и последующим воспламенением. Наряду с этим возможно возникновение больших разностей потенциалов между отдельными предметами внутри строения, что может быть причиной поражения людей электрическим током. Весьма опасны прямые удары молний в воздушные линии связи с деревянными опорами, так как при этом могут возникать разряды с проводов и аппаратуры (телефон, выключатели) на землю и другие предметы, что может привести к пожарам и поражению людей электрическим током. Прямые удары молнии в высоковольтные линии электропроводов могут быть причиной коротких замыканий. Опасно попадание молнии в самолеты. При ударе молнии в дерево могут быть поражены находящиеся вблизи него люди.

ЗАЩИТА ОТ МОЛНИЙ

Разряды атмосферного электричества способны вызвать взрывы, пожары и разрушения зданий и сооружений, что привело к необходимости разработки специальной системы молниезащиты.

Молниезащита – комплекс защитных устройств, предназначенных для обеспечения безопасности людей, сохранности зданий и сооружений, оборудования и материалов от разрядов молнии.

Молния способна воздействовать на здания и сооружения прямыми ударами (первичное воздействие), которые вызывают непосредственное повреждение и разрушение, и вторичными воздействиями – посредством явлений электростатической и электромагнитной индукции. Высокий потенциал, создаваемый разрядами молнии, может заноситься в здания также по воздушным линиям и различным коммуникациям. Канал главного разряда молнии имеет температуру 20 000°С и выше, вызывающую пожары и взрывы в зданиях и сооружениях.

Здания и сооружения подлежат молниезащите в соответствии с СН 305-77. Выбор защиты зависит от назначения здания или сооружения, интенсивности грозовой деятельности в рассматриваемом районе и ожидаемого числа поражений объекта молнией в год.

Интенсивность грозовой деятельности характеризуется средним числом грозовых часов в году nч, или числом грозовых дней в году nд. Определяют ее с помощью соответствующей карты, приведенной в СН 305-77, для конкретного района.

Применяют и более обобщенный показатель – среднее число ударов молнии в год (п) на 1 км2 поверхности земли, который зависит от интенсивности грозовой деятельности.

Таблица 19

Интенсивность грозовой деятельности

Интенсивность грозовой деятельности, ч/год   10-20   20-40   40-60   60-80   80 и более  
n            

Ожидаемое число поражений молнией в год зданий и сооружений N, не оборудованных молниезащитой, определяется по формуле:

N = (S + 6hx) (L + 6hx) n • 10-6,

где S и L – соответственно ширина и длина защищаемого здания (сооружения), имеющего в плане прямоугольную форму, м; для зданий сложной конфигурации при расчете N в качестве S и L принимают ширину и длину наименьшего прямоугольника, в который может быть вписано здание в плане; hх – наибольшая высота здания (сооружения), м; п – среднегодовое число ударов молнии в 1 км2 земной поверхности в месте расположения здания.

Для дымовых труб, водонапорных башен, мачт, деревьев ожидаемое число ударов молнии в год определяют по формуле:

N = 9 ´ 10-6h2x.

В незащищенную от молнии линию электропередачи протяженностью L км со средней высотой подвеса проводов hср число ударов молнии за год составит при допущении, что опасная зона распространяется от оси линии в обе стороны на 3 hср,

N = 0,42 ´ 10´ Lhсрnч.

В зависимости от вероятности вызванного молнией пожара или взрыва, исходя из масштабов возможных разрушений или ущерба, нормами установлены три категории устройства молниезащиты.

В зданиях и сооружениях, отнесенных к I категории молниезащиты, длительное время сохраняются и систематически возникают взрывоопасные смеси газов, паров и пыли, перерабатываются или хранятся взрывчатые вещества. Взрывы в таких зданиях, как правило, сопровождаются значительными разрушениями и человеческими жертвами.

В зданиях и сооружениях II категории молниезащиты названные взрывоопасные смеси могут возникнуть только в момент производственной аварии или неисправности технологического оборудования, взрывчатые вещества хранятся в надежной упаковке. Попадание молнии в такие здания, как правило, сопровождается значительно меньшими разрушениями и жертвами.

В зданиях и сооружениях III категории от прямого удара молнии может возникнуть пожар, механические разрушения и поражения людей. К этой категории относятся общественные здания, дымовые трубы, водонапорные башни и др.

Здания и сооружения, относимые по устройству молниезащиты к I категории, должны быть защищены от прямых ударов молнии, электростатической и электромагнитной индукции и заноса высоких потенциалов через наземные и подземные металлические коммуникации по всей территории России.

Здания и сооружения II категории молниезащиты должны быть защищены от прямых ударов молнии, вторичных ее воздействий и заноса высоких потенциалов по коммуникациям только в местностях со средней интенсивностью грозовой деятельности nч = 10.

Здания и сооружения, отнесенные по устройству молниезащиты к III категории, должны быть защищены от прямых ударов молнии и заноса высоких потенциалов через наземные металлические коммуникации, в местностях с грозовой деятельностью 20 ч и более в год.

Здания защищаются от прямых ударов молнии молниеотводами. Зоной защиты молниеотвода называют часть пространства, примыкающую к молниеотводу, внутри которого здание или сооружение защищено от прямых ударов молнии с определенной степенью надежности. Зона защиты А обладает степенью надежности 99,5% и выше, а зона защиты Б – 95% и выше.

Молниеотводы состоят из молниеприемников (воспринимающих на себя разряд молнии), заземлителей, служащих для отвода тока молнии в землю, и токоотводов, соединяющих молниеприемники с заземлителями.

Молниеотводы могут быть отдельно стоящими или устанавливаться непосредственно на здании или сооружении. По типу молниеприемника их подразделяют на стержневые, тросовые и комбинированные. В зависимости от числа действующих на одном сооружении молниеотводов, их подразделяют на одиночные, двойные и многократные.

Молниеприемники стержневых молниеотводов устраивают из стальных стержней различных размеров и форм сечения. Минимальная площадь сечения молниеприемника – 100 мм2, чему соответствует круглое сечение стержня диаметром 12 мм, полосовая сталь 35 х 3 мм или газовая труба со сплющенным концом.

Молниеприемники тросовых молниеотводов выполняют из стальных многопроволочных тросов сечением не менее 35 мм2 (диаметр 7 мм).

В качестве молниеприемников можно использовать также металлические конструкции защищаемых сооружений – дымовые и другие трубы, дефлекторы (если они не выбрасывают горючие пары и газы), металлическую кровлю и другие металлоконструкции, возвышающиеся над зданием или сооружением.

Токоотводы устраивают сечением 25-35 мм2 из стальной проволоки диаметром не менее 6 мм или стали полосовой, квадратного или иного профиля. В качестве токоотводов можно использовать металлические конструкции защищаемых зданий и сооружений (колонны, фермы, пожарные лестницы, металлические направляющие лифтов и т. д.), кроме предварительно напряженной арматуры железобетонных конструкций. Токоотводы следует прокладывать кратчайшими путями к заземлителям. Соединение токоотводов с молниеприемниками и заземлителями должно обеспечивать непрерывность электрической связи в соединяемых конструкциях, что, как правило, обеспечивается сваркой. Токоотводы нужно располагать на таком расстоянии от входов в здания, чтобы к ним не могли прикасаться люди во избежание поражения током молнии.

Заземлители молниеотводов служат для отвода тока молнии в землю, и от их правильного и качественного устройства зависит эффективная работа молниезащиты.

Конструкция заземлителя принимается в зависимости от требуемого импульсного сопротивления с учетом удельного сопротивления грунта и удобства его укладки в грунте. Для обеспечения безопасности рекомендуется ограждать заземлители или во время грозы не допускать людей к заземлителям на расстояние менее 5–6 м. Заземлители следует располагать вдали от дорог, тротуаров и т. д.

УРАГАНЫ

Ураган – это циклон, у которого давление в центре очень низкое, а ветры достигают большой и разрушительной силы. Скорость ветра может достигать 25 км/ч. Иногда ураганы на суше называют бурей, а на море – штормом, тайфуном.

гидросферные опасности - student2.ru

Ураганы представляют собой явление морское и наибольшие разрушения от них бывают вблизи побережья. Но они могут проникать и далеко на сушу. Ураганы могут сопровождаться сильными дождями, наводнениями, в открытом море образуют волны высотой более 10 м, штормовыми нагонами. Особой силой отличаются тропические ураганы, радиус ветров которых может превышать 300 км (рис. 22).

Ураганы – явление сезонное. Ежегодно на Земле развивается в среднем 70 тропических циклонов. Средняя продолжительность урагана около 9 дней, максимальная – 4 недели.

БУРЯ

Буря – это очень сильный ветер, приводящий к большому волнению на море и к разрушениям на суше. Буря может наблюдаться при прохождении циклона, смерча.

Скорость ветра у земной поверхности превышает 20 м/с и может достигать 100 м/с. В метеорологии применяется термин «шторм», а при скорости ветра больше 30 м/с – ураган. Кратковременные усиления ветра до скоростей 20-30 м/с называютсяшквалами.

СМЕРЧИ

Смерч – это атмосферный вихрь, возникающий в грозовом облаке и затем распространяющийся в виде темного рукава или хобота по направлению к поверхности суши или моря (рис.23).

В верхней части смерч имеет воронкообразное расширение, сливающееся с облаками. Когда смерч опускается до земной поверхности, нижняя часть его тоже иногда становится расширенной, напоминающей опрокинутую воронку. Высота смерча может достигать 800-1500 м. Воздух в смерче вращается и одновременно поднимается по спирали вверх, втягивая пыль или воду. Скорость вращения может достигать 330 м/с. В связи с тем, что внутри вихря давление уменьшается, то происходит конденсация водяного пара. При наличии пыли и воды смерч становится видимым.

гидросферные опасности - student2.ru

Диаметр смерча над морем измеряется десятками метров, над сушей – сотнями метров.

Смерч возникает обычно в теплом секторе циклона и движется вместе с циклоном со скоростью 10-20 м/с.

Смерч проходит путь длиной от 1 до 40-60 км. Смерч сопровождается грозой, дождем, градом и, если достигает поверхности земли, почти всегда производит большие разрушения, всасывает в себя воду и предметы, встречающиеся на его пути, поднимает их высоко вверх и переносит на большие расстояния. Предметы в несколько сотен килограммов легко поднимаются смерчем и переносятся на десятки километров. Смерч на море представляет опасность для судов.

Смерчи над сушей называются тромбами, в США их называют торнадо.

Как и ураганы, смерчи опознают со спутников погоды.

Для визуальной оценки силы (скорости) ветра в баллах по его действию на наземные предметы или по волнению на море английский адмирал Ф. Бофорт в 1806 г. разработал условную шкалу, которая после изменений и уточнений в 1963 г. была принята Всемирной метеорологической организацией и широко применяется в синоптической практике (таблица 20).

Таблица 20

Наши рекомендации